Urethane Timing Belts

Passion for Products

IMAGINATION, DESIGN, EXECUTION

OUR EXPERTISE

Gates Mectrol is a world leading manufacturer of polyurethane timing belts for the synchronous conveying, linear and rotary positioning and power transmission markets. We employ more than thirty experienced engineers and chemists who are dedicated to the development and application of automation components. As a result, we can provide you with the most extensive range and highest quality urethane timing belt products in the industry.

OUR CREATIVITY

With manufacturing facilities and partner distributors located throughout the world, Gates Mectrol is available to serve your specific design challenges anywhere, at anytime. Our associates know and understand our business - and yours.

OUR "CAN DO!" ATTITUDE

Gates Mectrol's passion for products is alive in our 'Can Do' attitude to offer the best application engineering tools and assistance available. Our online suite of design tools, combined with highly skilled application engineers, means that we can solve your most difficult challenges. Let Gates Mectrol's team of engineers work for you.

Gates Mectrol Urethane Timing Belts Broadest Range Available

Page		Page	
1	Product Overview	23 - 28	Profiles
2	Table of Contents	29 – 36	Backings
3 – 4	Linear Belt Overview	37 – 38	Fabrication
5	Tooth Profile Comparison	39 – 44	Truly Endless Belts
7	Inch Profile Belts		F-Series Belts - Flex Belts
8	T Profile Belts		S-Series Belts - Cast Belts
9	AT Profile Belts	45	Field Welders
10	HTD & STD Profile Belts	46	Tension Meter
11 – 12	Linear Belt Specifications	47	Technical Design Online
13 – 14	Wide Belt Overview	48 - 60	Belt Selection Guide
15 – 16	Wide Belt Specifications	61 – 64	Chemical Resistance
17 – 18	Flat Belt Overview	65	Other Gates Mectrol Products
19 – 20	Flat Belt Specifications	66	Facilities
21 – 22	Self Tracking Belts, Pulleys, Guides		

Linear Belt Overview

Linear timing belts provide the greatest degree of flexibility for both synchronous conveying and linear positioning applications.

Gates Mectrol can produce linear timing belts in a variety of tooth profile, length, and material combinations. This gives you a huge range of possible configurations for your application.

You can purchase linear belt lengths by the roll, or we can produce endless belts to meet your specifications. Endless belts are ideal for conveying and motion control applications. As a result, Gates Mectrol can satisfy your immediate requirements and service your future application needs.

Features

- Very high tensile strength and stiffness
- Parallel cord construction
 - No cords exposed at edges of belt
 - Better tracking
 - Uniform tensioning
- Tough polyurethane construction
 - Durable and cut resistant
 - Oil, chemical and water resistant
 - Non-marking
- Steel or Kevlar[®] tension members
- Choice of polymers including FDA/USDA grades, antistatic resin, and Hytrel®
- Nylon back and nylon tooth surface options available for quieter operation and reduced friction
- Various molded profiles and backing materials available
- Wide range of tooth profiles to meet your application requirements

Endless belts of virtually any length can be produced utilizing a thermal welding process which joins the ends of the belt together.

Linear Belt Applications

Application Characteristics

- High precision positioning or indexing
- Synchronous conveying
- High acceleration, deceleration or continuous high running speeds
- Precise product orientation
- Multiple belt, common shaft conveying
- Customized belts to meet any application need

Bowling pinsetter applications require a variety of timing belts with different profiles, high friction backings, and durability.

Urethane timing belts are ideal for use in vertical and horizontal door applications. Durable and clean running, these belts provide quiet and positive motion for industrial, train, elevator, and consumer door applications.

Urethane timing belts are oil and cut resistant making them ideal for harsh environments, such as stamping plant conveyors.

Our Application Engineering staff is available to you at apps@gatesmectrol.com or 1-800-394-4844

Tooth Profile Comparison

Inch Profile Belts - XL, L, H, XH

These classic trapezoidal tooth profiles are the original timing belt tooth design. This tooth profile is commonly used for **conveying applications**. They offer a good selection of pitch spacing for use with molded profile belts. The tooth profile is fairly low and has a large surface area at the tip of the tooth providing good support on sliding conveying surfaces.

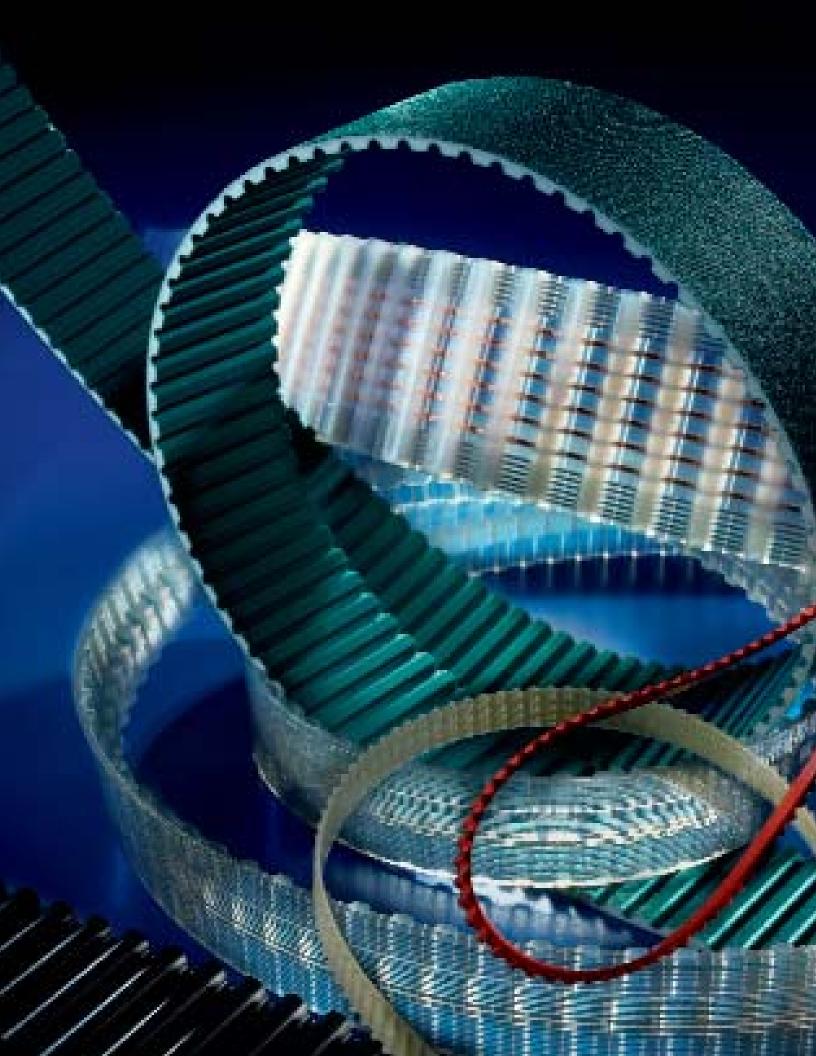
T Profile Belts - T2.5, T5, T10, T20

These metric trapezoidal profiles are similar to inch profiles, also commonly used for **conveying applications**, yet have a slightly deeper tooth engagement than inch profiles. The tooth meshing is more reliable. However, backlash can be slightly greater.

AT Profile Belts - AT5, AT10, AT20

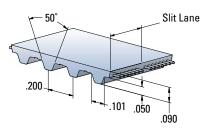
This profile was developed to enable higher load carrying capacity combined with low backlash. The stronger and stiffer tooth makes these belts ideal for **linear positioning and motion control**, but may require larger pulley diameters.

STD Profile Belts - STD5, STD8



This profile provides superior load distribution, low backlash, and **reduced wear and noise** characteristics. It is an excellent profile for **linear and rotary positioning** and **power transmission** applications.

HTD Profile Belts - HTD5, HTD8, HTD14



This rounded profile is similar to STD, and is also an excellent profile for **linear and rotary positioning** and **power transmission** applications, yet has deeper tooth engagement. However, HTD may exhibit slight increases in noise and wear.

Inch Profile Belts

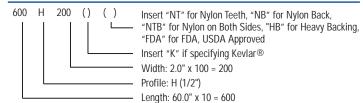
XL .200" Pitch

Belt Section		XL	L	H*, H-HF*	WH	XH
Min. Welded Belt Length	Inch	17	17	17 (4" wide) 33.5 (6" wide)	33	40.25
Standard	Feet	200	200	200	200	100
Roll Lengths	meters	61	61	61	61	30
Standard Slitting Lanes	Inch	1/4	1/2	1.0	N/A	1.0
Available Slitting Lanes	Inch	N/A	N/A	3/4	N/A	N/A

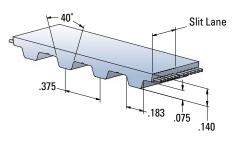
All roll lengths are ±1%.

*HB - Heavy Back option available.

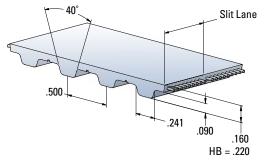
Available Widths

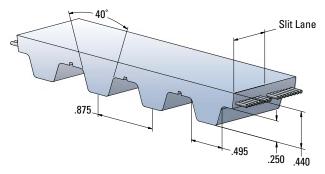

Code	Inch	mm	XL	L	H, H-HF	WH	XH
025	1/4	6.35	Х				
031	5/16	7.94	Х				
037	3/8	9.53	Х	Х	Х		
050	1/2	12.7	Х	Х	Х		Х
075	3/4	19.05	Х	Х	Х		Х
100	1	25.4	Х	Х	Х		Х
150	1 1/2	38.1	Х	Х	Х		Х
200	2	50.8	Х	Х	Х		Х
300	3	76.2	Х	Х	Х		Х
400	4	101.6	Х	Х	Х		Х
600	6	152.4			Х	Х	Х
900	9	228.6				Х	
1200	12	304.8				Х	
1500	15	381				Х	
1800	18	457.2				Х	
3600	36	914				Х	

All belts are available in any width between the minimum and maximum listed width. For widths over 18" contact Applications Engineering.

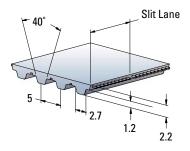

Width Tolerances

Width	XL	L	H, H-HF	WH	XH
Up to 2"	± .020"	± .020"	± .020″	N/A	± .040"
> 2"- 4"	± .030"	± .030"	± .030"	N/A	± .040"
> 4"- 6"	N/A	N/A	± .030"	N/A	± .040"
> 8"- 36"	N/A	N/A	N/A	± .060"	N/A

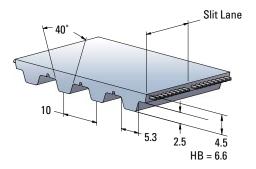



L .375" Pitch

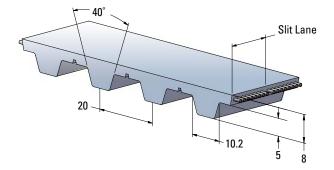
H, H-HF .500" Pitch WH .500" Pitch—From 6" to 36" Wide



XH .875" Pitch



T Profile Belts


T5 5mm Pitch

T10, T10-HF 10mm Pitch WT10 10mm Pitch from 150 to 900mm wide

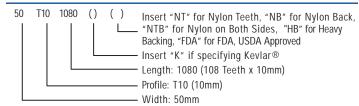
T20 20mm Pitch

Belt Section		T5 T10*, T10-HF*		WT10	T20
Min. Welded Belt Length	mm	440 (50mm wide) 450 (100mm wide)	450 (100mm wide) 850 (150mm wide)	850	1000
Standard Roll Lengths	meters	50 oi	- 100	60	50 or 100
Standard Slitting Lanes	mm	25	25	N/A	25
Available Slitting Lanes	mm	10, 16	16, 32	N/A	N/A

All roll lengths are ±1%.

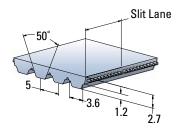
*HB - Heavy Back option available.

Available Widths


mm	T5	T10, T10-HF	WT10	T20
6	Х			
10	Х	Х		
12	Х	Х		
16	Х	Х		
20	Х	Х		
25	Х	Х		Х
32	Х	Х		Х
50	Х	Х		Х
75	Х	Х		Х
100	Х	Х		Х
150		Х	Х	Х
225			Х	
300			Х	
380			Х	
450			Х	
900			Х	

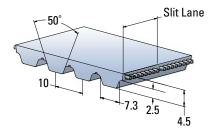
All belts are available in any width between the minimum and maximum listed width. For widths over 450mm contact Applications Engineering.

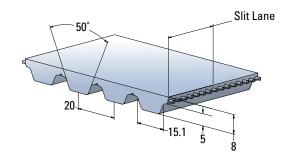
Width Tolerances


Width	Т5	T10, T10-HF	WT10	T20
Up to 50mm	±0.5mm	±0.5mm	N/A	± 1.0mm
> 50-100mm	±0.75mm	±0.75mm	N/A	± 1.0mm
> 100-150mm	N/A	±0.75mm	N/A	± 1.0mm
> 150-900mm	N/A	N/A	±1.0mm	N/A

To Order T Profile Belts

AT Profile Belts


AT5 and ATL5 5mm Pitch

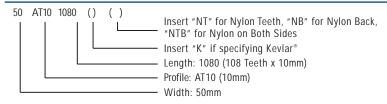

Belt Section		AT5	ATL5	AT10	ATL10, ATL10-HF	AT20, ATL20	
Min. Welded Belt Length	mm	440	450	460 (100mm wide) 860 (150mm wide)	900	1000	
Standard Roll Lengths	meters		50 or 100				
Standard Slitting Lanes	mm	25	25	25	25	N/A	
Available Slitting Lanes	mm	16	16	N/A	N/A	N/A	

All roll lengths are ±1%.

AT10, ATL10, and ATL10-HF 10mm Pitch

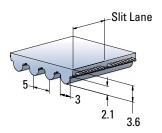
AT20 and ATL20 20mm Pitch

Available Widths

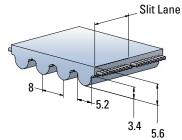

mm	AT5	ATL5	AT10, ATL10, ATL10-HF	AT20, ATL20
6	Х			
10	Х	Х		
12	Х	Х		
16	Х	Х	Х	
20	Х	Х	Х	
25	Х	Х	Х	Х
32	Х	Х	Х	Х
50	Х	Х	Х	Х
75	Х	Х	Х	Х
100	Х	Х	Х	Х
150		Х	Х	Х

All belts are available in any width between the minimum and maximum listed width.

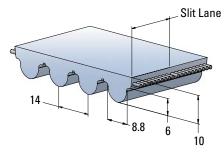
Width Tolerances

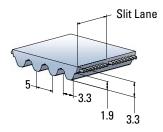

Width	AT5	ATL5	AT10	ATL10, ATL10-HF	AT20	ATL20
Up to 50mm	±0.5mm	±0.5mm	±0.75mm	± 1.0mm	± 1.0mm	± 2.0mm
> 50-100mm	±0.75mm	±0.75mm	± 1.0mm	±1.5mm	± 1.5mm	± 2.0mm
> 100-150mm	N/A	±0.75mm	± 1.0mm	± 1.5mm	± 1.5mm	± 2.0mm

To Order AT Profile Belts



HTD and STD Profile Belts


HTD5 5mm Pitch


HTD8 8mm Pitch

HTD14, HTDL14 14mm Pitch

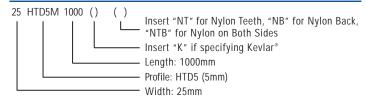
STD5 5mm Pitch

STD8 8mm Pitch

Belt Section		HTD5	HTD8	HTD14, HTDL14	STD5	STD8	
Min. Welded Belt Length	mm	450	456	1000	450	456	
Standard Roll Lengths	meters	50 or 100					
Standard Slitting Lanes	mm	25	20, 30	55	25	20, 30	
Available Slitting Lanes	mm	N/A	25	85	N/A	25	

All roll lengths are ±1%.

Available Widths


mm	HTD5	HTD8	HTD14, HTDL14	STD5	STD8
5	Х			Х	
10	Х	Х		Х	Х
15	Х	Х		Х	Х
20		Х			Х
25	Х	Х	Х	Х	Х
30		Х			Х
40			Х		
50	Х	Х		Х	Х
55			Х		
85	Х	Х	Х	Х	Х
100	Х	Х	Х	Х	Х
115			Х		
150	Х	Х		Х	
170			Х		

All belts are available in any width between the minimum and maximum listed width.

Width Tolerances

Width	HTD5	HTD8	HTD14, HTDL14	STD5	STD8
Up to 50mm	±0.5mm	±0.75mm	±1.0mm	±0.5mm	±0.75mm
> 50-100mm	±0.75mm	± 1.0mm	±1.5mm	±0.75mm	± 1.0mm
> 100-150mm	±0.75mm	± 1.0mm	±2.0mm	±0.75mm	N/A
> 150-170mm	N/A	N/A	±2.0mm	N/A	N/A

To Order HTD and STD Profile Belts

Linear Belt Specifications

Belt Section				XL	L	н	H-HF	ХН	T5	AT5	ATL5
Pitch (inch and metric)				.200"	.375"	.500"	.500"	.875"	5mm	5mm	5mm
Ultimate Tensile Strength	S	teel	lb/in N/25mm	730 3250	1340 5965	1500 6660	2300 10235	3020 13435	730 3250	1450 6450	2300 10235
per Inch or 25mm Belt Width	Ke	vlar®	lb/in N/25mm	1525 6780	2140 9520	1830 8145	N/A N/A	3600 16010	1525 6780	1820 8095	N/A N/A
Max. Allowable Belt Tension (T _{1all}) per Inch or 25mm Belt Width	Steel and	Open Ended	lb/in N/25mm	185 825	360 1610	375 1670	575 2560	755 3360	185 825	365 1625	575 2560
(T _{1all}) per men of 25mm Ben Width (Safety Factor >4)	Kevlar [®]	Welded	lb/in N/25mm	140 625	200 890	245 1090	290 1290	380 1695	140 625	225 1005	225 1005
Allowable Effective Tension	Oper	n Ended	lb/in N/25mm	180 790	360 1580	440 1930	440 1930	880 3855	200 880	290 1270	290 1270
for the Belt Teeth T _{eall} (15 and More Teeth in Mesh)	We	elded	lb/in N/25mm	135 595	270 1185	330 1445	330 1445	660 2890	150 660	220 965	220 965
Specific Belt Weight w _b	S	teel	lb Kg	0.036 0.016	0.059 0.027	0.066 0.030	0.072 0.033	0.180 0.082	0.048 0.022	0.071 0.032	0.080 0.036
(Imperial - Weight/ft/inch) (Metric Pitch - Weight/meter/cm)	Ke	vlar®	lb Kg	0.033 0.015	0.052 0.024	0.055 0.025	N/A N/A	0.155 0.070	0.043 0.020	0.032 0.036 0.060 N/A 0.030 N/A	N/A N/A
	S	teel	lb/in N/mm	47950 8400	92800 16255	109,000 19085	133600 23400	213600 37410	47950 8400	100500 17605	133600 23400
Specific Belt Stiffness c _{sp}	Ke	vlar®	lb/in N/mm	52250 9155	80000 14000	60700 10635	N/A N/A	100000 17500	52250 9155	80000 14000	N/A N/A
Min. No. of Pulley Teeth z _{min}				10	10	14	12	18	10	15	15
Min. Pitch Diameter (Inch or mm)				.64″	1.19″	2.23″	1.91″	5.01″	16mm	24mm	24mm
Min. Diameter of Tensioning Idler in Running on Back of Belt mm			1.125 30	2.375 60	3.125 80	2.375 60	5.875 150	1.125 30	2.375 60	2.375 60	
Available in FDA/USDA Construction (FDA/USDA 86 shore A Urethane)			Yes	Yes	Yes			Yes			
Stock Colors (C=Clear, W=White)				С	С	С	С	С	С	W	W

Table 1

Dupont", Hytrel®, and Kevlar® are trademarks or registered trademarks of E.I. du Pont de Nemours and Company.

Temperature Range	-30°C to +80°C (-22°F to 176°F)					
Durometer	92 Shore A - Standard PU, 85 Shore A - FDA/USDA					
	Urethane vs. Steel (dry)	0.5 to 0.7				
	Urethane vs. Aluminum (dry)	0.5 to 0.6				
Coefficient of Friction	Urethane vs. UHMW (dry)	0.2 to 0.4				
	Nylon vs. Steel (dry)	0.2 to 0.4				
	Nylon vs. UHMW (dry)	0.1 to 0.3				

Table 1A

T10	T10-HF	AT10	ATL10	ATL10-HF	T20	AT20	ATL20	HTD5	HTD8	HTD14	HTDL14	STD5	STD8
10mm	10mm	10mm	10mm	10mm	20mm	20mm	20mm	5mm	8mm	14mm	14mm	5mm	8mm
1500	2300	3020	5160	5400	3020	5160	6900	2300	3020	4470	7650	2300	3020
6660	10235	13435	22955	24020	13435	22955	30760	10235	13435	19890	34040	10235	13435
1830	N/A	3600	N/A	N/A	3600	4650	N/A	2000	3600	4030	N/A	2000	3600
8145	N/A	16010	N/A	N/A	16010	20683	N/A	8900	16010	17925	N/A	8900	16010
375	575	755	1290	1350	755	N/A	1725	575	755	1120	1910	575	755
1670	2560	3360	5740	6005	3360	N/A	7690	2560	3360	4970	8510	2560	3360
245	290	N/A	N/A	380	380	N/A	N/A	290	380	N/A	N/A	290	380
1090	1290	N/A	N/A	1695	1695	N/A	N/A	1290	1695	N/A	N/A	1290	1695
380	380	585	585	585	715	N/A	1220	230	425	775	775	220	410
1665	1665	2565	2565	2565	3135	N/A	5345	1010	1865	3450	3455	965	1800
285	285	N/A	N/A	440	535	N/A	N/A	160	270	N/A	N/A	155	255
1250	1250	N/A	N/A	1930	2345	N/A	N/A	705	1185	N/A	N/A	680	1120
0.095	0.102	0.124	0.147	0.153	0.162	0.218	0.239	0.090	0.130	0.235	0.271	0.087	0.113
0.043	0.046	0.056	0.067	0.069	0.074	0.099	0.109	0.041	0.059	0.107	0.123	0.039	0.051
0.080	N/A	0.092	N/A	N/A	0.131	0.160	N/A	N/A	0.103	0.185	N/A	0.064	0.095
0.036	N/A	0.042	N/A	N/A	0.060	0.073	N/A	N/A	0.047	0.084	N/A	0.029	0.043
109,000	133600	213600	334600	290000	213600	334600	440000	133600	213600	294400	440000	133600	213600
19085	23400	37410	58600	50790	37410	58600	77050	23400	37410	51560	77050	23400	37410
60700	N/A	100000	N/A	N/A	100000	100000	N/A	N/A	100000	86500	N/A	N/A	100000
10635	N/A	17500	N/A	N/A	17500	17500	N/A	N/A	17500	15150	N/A	N/A	17500
16	12	18	25	20	15	18	30	14	20	28	43	14	20
51mm	38mm	57mm	80mm	64mm	96mm	115mm	191mm	22mm	51mm	125mm	191mm	22mm	51mm
3.125	2.375	4.750	5.875	5.125	4.750	7.125	9.875	2.375	4.750	7.875	9.875	2.375	4.750
80	60	120	150	130	120	180	250	60	120	200	250	60	120
Yes													
С	С	W	W	W	С	W	W	W	W	W	W	W	W

- HF designates high flex cords.
- All belt is available with Nylon Fabric on either or both sides. For Nylon on the tooth side, specify "NT" For Nylon on the back side, specify "NB" For Nylon on both sides, specify "NTB"
- For special colors, consult a Gates Mectrol Applications Engineer.
- Belting produced to specific length tolerance is available upon request.
- Many linear positioning applications require belts of a specific length tolerance, or a "minus pitch tolerance." Gates Mectrol can produce belts to specific minus tolerances. Consult with a Gates Mectrol applications engineer to determine the proper length tolerance calculation.

Wide Belt Overview

Gates Mectrol can produce urethane timing belts in widths up to 900mm. This belt is specifically designed for synchronous conveying applications.

These belts are primarily used as process conveyor belts. Process (or conversion steps) normally occur on the belt, therefore the conveyed product requires additional width.

Features

- High strength Kevlar[®] cord construction
- Parallel cord construction
 No cords exposed at edges of belt
 - Better tracking
 - Uniform tensioning
- Tough polyurethane construction
 - Durable and cut resistant
 - Oil, chemical and water resistant
 - Non-marking
- Choice of polymers including FDA/USDA grades and Hytrel[®]
- Nylon back and nylon tooth surface options available for quieter operation and reduced friction
- Various molded profiles and backing materials available
- No lubrication required

In deboning applications, USDA approved urethane timing belts provide zero slip conveying, easy wash down and clean up while being very resistant to knife cuts.

Wide Belt Applications

Application Characteristics

- Replaces flat conveyor belt
 - No retensioning required
 - Lower shaft forces
 - Positive indexing
 - Higher acceleration without slippage
- Alternative to modular plastic conveyor
 - Quieter operation
 - Easier cleaning
 - No hinges or pins to break and contaminate products
- High speed conveying
- Rapid indexing
- Automated process conveyor belts
- Bulk product conveying
- Food and confectionary conveying
- Clean room or wash down environments
 - Consult Application Engineering staff for restrictions

Four 45 cm wide, timing belts accelerate skiers for faster loading of detachable chair lifts. Timing belts ensure uniform speed of each skier.

used in synchronous conveying provide dramatically higher production speeds - as shown on this diaper production line.

Our Application Engineering staff is available to you at apps@gatesmectrol.com or 1-800-394-4844

Wide Belt Specifications

Belt Section			WH	WT10
Pitch (inch and metric)			.500″	10mm
Ultimate Tensile Strength per Inch or 25mm Belt Width	Kevlar®	lb/in N/25mm	830 3645	830 3645
Max. Allowable Belt Tension (T _{1all}) per Inch or 25mm Belt Width <i>(Safety Factor >4)</i>	140 610	140 610		
Allowable Effective Tension for the Belt Teeth T _{eall} (15 and More Teeth in Mesh)	330 1445	285 1250		
Specific Belt Weight w _b (Imperial - Weight/ft/inch) (Metric Pitch - Weight/meter/cm)	Kevlar®	lb Kg	0.056 0.025	0.085 0.039
Specific Belt Stiffness c _{sp}	Kevlar®	lb/in N/mm	30350 5300	30350 5300
Min. No. of Pulley Teeth z _{min}			14	16
Min. Pitch Diameter (Inch or mm)			2.23"	51mm
Min. Diameter of Tensioning Idler Running on Back of Belt	3.12 80	3.12 80		
Available in FDA/USDA Construction (FDA/USDA 85 shore A Urethane)	Yes	Yes		
Stock Colors (C=Clear, W=White)			C, W	C, W

Table 2

WMTD3 - under development

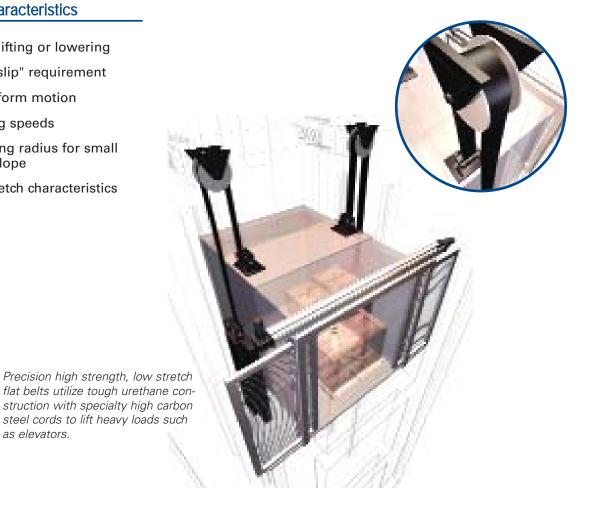
Temperature Range	-30°C to +80°C (-22°F to 176°F)					
Durometer	92 Shore A - Standard PU, 85 Shore A - FDA/USDA					
	Urethane vs. Steel (dry)	0.5 to 0.7				
	Urethane vs. Aluminum (dry)	0.5 to 0.6				
Coefficient of Friction	Urethane vs. UHMW (dry)	0.2 to 0.4				
	Nylon vs. Steel (dry)	0.2 to 0.4				
	Nylon vs. UHMW (dry)	0.1 to 0.3				

Flat Belt Overview

Gates Mectrol can provide you with a range of high strength, low stretch flat belts for use in your lifting and positioning applications.

These flat belts are normally sold in open ended lengths and are clamped on each end. We can also provide you with thermally welded endless belts to your specifications.

Note: Gates Mectrol's high-strength flat belts are generally not interchangeable with traditional flat belts due to the fact that they are designed NOT to stretch, and therefore, should not be run on crowned pulleys.

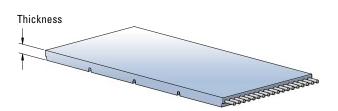

Application Characteristics

- Heavy load lifting or lowering
- Allows for "slip" requirement
- Smooth uniform motion
- High running speeds
- Small bending radius for small design envelope
- Very low stretch characteristics

as elevators.

Features

- Smooth, vibration free operation
- Small pulley diameters
- · High strength, low stretch for long life
- Sealed edges, no cord fraying
- · Easily guided with flanged pulleys or v-guides
- Very high operating surface speeds
- Variety of polymers available
- Kevlar[®] or steel cord construction
- No lubrication needed
- No retentioning requireed



Our Application Engineering staff is available to you at apps@gatesmectrol.com or 1-800-394-4844

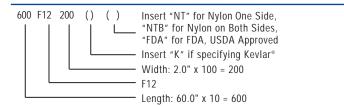
Flat Belts

Belt Section		F8, F8U	FL8	F12, F12U	FL12	F30	FX9, FX12	FR16
Min. Welded	Inch	19	21	20	24	N/A	N/A	N/A
Belt Length	mm	483	533	508	610	N/A	N/A	N/A
Standard	Feet	200	200	200	200	200	200	200
Roll Lengths	meters	61	61	61	61	61	61	61
Standard	Inch	1	1	1	1	1	1	0
Slitting Lanes	mm	25	25	25	25	25	25	0

All roll lengths are ±1%.

Belt Type	Thickness
F8	0.080"
FL8	0.080"
F12	0.125"
FL12	0.125"
F30	3mm
FX9	0.090"
FX12	0.120"
FR16	4mm

Available Widths


Code	Inch	mm	F8, FL8, F12, FL12, F8U, F12U	F 3 0	FX9, FX12	FR16
025	1/4	6.35				
050	1/2	12.7	Х			
075	3/4	19.05	Х		Х	
100	1	25.4	Х	Х	Х	Х
150	1 1/2	38.1	Х	Х	Х	Х
200	2	50.8	Х	Х	Х	Х
300	3	76.2	Х	Х	Х	Х
400	4	101.6	Х	Х	Х	Х

All belts are available in any width between the minimum and maximum listed width.

Width Tolerances

Width	F8, FL8, F12, FL12, F8U, F12U	F30	FX9, FX12	FR16
Up to 2"	± .020"	± .020"	± .030"	± .040"
> 2" - 4"	± .030"	± .030″	± .030"	± .040"

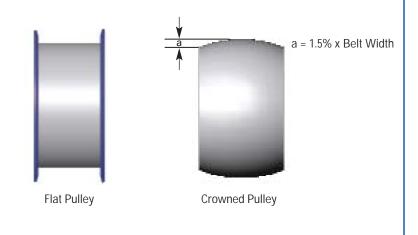
To Order Flat Belts

Flat Belt Specifications

Belt Section				F8	FL8	F12	FL12	F30
Thickness	Thickness inch metric				.080 2.0	.125 3.0	.125 3.0	.120 3.0
Ultimate Tensile Strength	S	teel	lb/in N/25mm	1500 6660	3020 13435	1500 6660	5160 22955	6900 30760
per Inch or 25mm Belt Width	Ke	vlar®	lb/in N/25mm	1830 8145	N/A N/A	1830 8145	N/A N/A	N/A N/A
Max. Allowable Belt Tension	Steel and	Open Ended	lb/in N/25mm	375 1670	755 3360	375 1670	1290 5740	1725 7690
(T _{1all}) per Inch or 25mm Belt Width (Safety Factor >4)	Kevlar [®]	Welded	lb/in N/25mm	245 1090	380 1695	245 1090	645 2870	863 1005
Specific Belt Weight w _b	Steel		lb Kg	.057 .026	.073 .033	.078 .035	.113 .051	.255 .116
(Imperial - Weight/ft/inch) (Metric Pitch - Weight/meter/cm)	Kevlar [®]		lb Kg	.045 .020	N/A N/A	.066 .030	N/A N/A	N/A N/A
Creating Dalk Chiffrages a	Steel		lb/in N/mm	89950 15755	213600 37410	89950 15755	334600 58600	440000 77050
Specific Belt Stiffness c _{sp}	Ke	vlar®	lb/in N/mm	60700 10635	N/A N/A	60700 10635	N/A N/A	N/A N/A
Min. Pulley Diameter (Inch or mm)			in mm	2.0 50	2.375 60	2.0 50	3.0 75	5.0 125
Min. Diameter of Tensioning Idler Running on Back of Belt	3.0 80	4.75 120	3.0 80	4.75 120	8.0 200			
Standard Material	PU	PU	PU	PU	PU			
Stock Colors (C=Clear 92A PU, W=White, B=Blac		С	С	С	С	В		

* Standard with antistatic nylon fabric on one side

Materials		92A PU	85A PU	TPR
Temperature Range		-25°C to 80°C	-30°C to 75°C	-40°C to 100°C
Durometer		92A	85A	90A
	Belt Material vs. Steel (dry)	0.5	0.7	0.5
	Urethane vs. Aluminum (dry)	0.5	0.6	0.5
Coefficient of Friction	Belt Material vs. UHMW (dry)	0.2	0.4	0.2
	Nylon vs. Steel (dry)	0.2 to 0.4	0.2 to 0.4	0.2 to 0.4
	Nylon vs. UHMW (dry)	0.1 to 0.3	0.1 to 0.3	0.1 to 0.3


Flat Belt Specifications

FX9	FX12	FR16
.090	.120	.157
2.3	3.0	4.0
N/A	N/A	N/A
N/A	N/A	N/A
4000	5000	4000
17800	22240	17800
1000	1250	1000
4450	5560	4450
N/A	N/A	N/A
.043	.060	.090
.020	.027	.041
N/A	N/A	N/A
N/A	N/A	N/A
90000	130000	90000
15760	22760	15760
3.0	4.0	5.0
75	100	125
4.5	6.0	5.0
115	150	125
PU	PU	PU
TPR	TPR	w/Nylon*
В	В	В

Pulley Design Recommendations

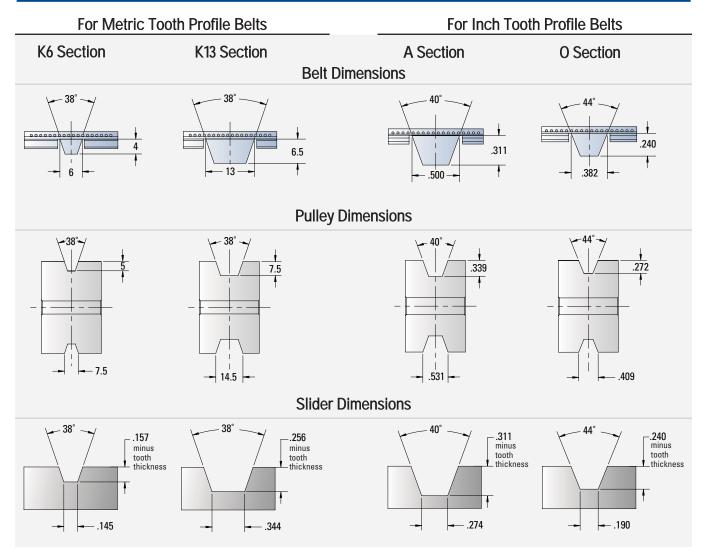
A flat faced pulley with flanges is preferred. In contrast to typical flat belts, these belts are designed for very high strength and extremely low stretch. Therefore, crowned pulleys should not be used.

If crowned pulleys are used, the maximum allowable crown is 1.5% of belt width.

- All belt is available with Nylon Fabric on either or both sides.
 For Nylon on one side, specify "NT" For Nylon on both sides, specify "NTB"
- For special colors, consult a Gates Mectrol Applications Engineer.
- Belting produced to specific length tolerance is available on request.

Self Tracking Belts

Notched V-Guide – Allows Maximum Flexibility

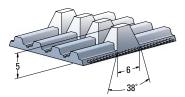

Gates Mectrol self tracking timing belts have all the capabilities of standard urethane timing belts but utilize guides to eliminate any lateral movement. Our range of specially designed urethane V-guides are notched along belt length to provide optimum flexibility around pulleys.

Gates Mectrol produces V-guided belts in two constructions — **fabricated**, any of four V-guides can be added to any pitch belt in any width, length combination, or — **integral**, the V-guide is integrally molded to specific belt pitches for greater strength and consistency.

Fabricated V-Guides

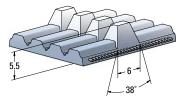
Belt Features

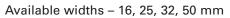
- V-guides can be added to virtually any of our belts, eliminating the need for flanged pulleys.
- Notched construction for extra flexibility around tight belt paths
- Produced with the same durable urethane as the base belt
- Different sizes available to serve any application requirement
- Integrally produced with the belt for durability or fabricated to fit onto our existing belts

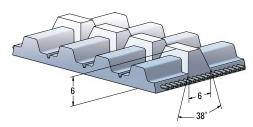

Self Tracking Belts

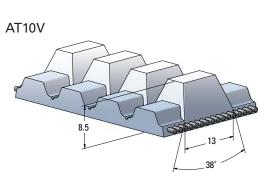
Application Characteristics

- Long length conveying or linear positioning where tracking is an issue
- Conveying applications where pulley flanges are not acceptable
- Reduce or eliminate any belt "wander" by providing continuous guiding along conveyor length

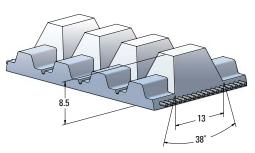

Integral V-Guides


T5V

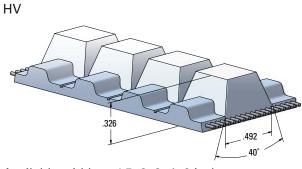

Available widths - 16, 25, 32, 50, 75, 100 mm



T10VS



Available widths - 16, 25, 32, 50 mm



Available widths - 25, 32, 50, 75 mm

T10V

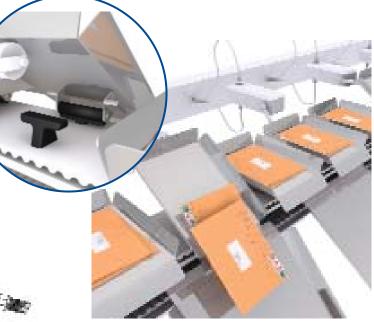
Available widths - 32, 50, 75, 100, 150 mm

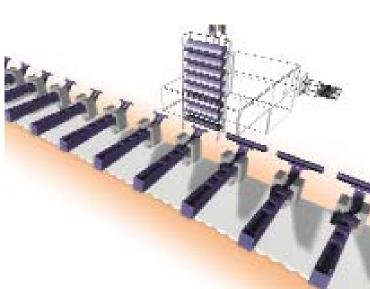
Available widths – 1.5, 2, 3, 4, 6 inch

Our Application Engineering staff is available to you at apps@gatesmectrol.com or 1-800-394-4844

Gates Mectrol timing belts can be customized with welded-on profiles to meet the specific demands of your application.

These profiles can be molded in virtually any configuration for holding, pushing, lifting, or actuating. This makes these profile belts ideal for your assembly, packaging, inserting and other automation equipment applications.


Our molded profiles are produced in the same tough urethane and become an integral part of the belt by **thermal bonding**.


Application Characteristics

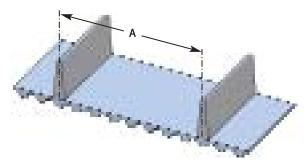
- Pushing, carrying or actuating in packaging applications
- Product location in process applications
- Holders for mounting devices
- Interchangeable spacing for alternate product conveying

Features

- Non-marking, durable urethane construction
- Molded and located on the belt to exacting tolerances
- Can be molded to virtually any custom configuration
- Available in multiple durometers
- FDA/USDA compounds available
- Thermally fused to base belt material
- Available with metal inserts, including threaded inserts

Exact placement of the profile allows for precision assembly of parts. In this application, razor heads are mounted accurately as a result of the Gates Mectrol profiled timing belt.

Custom profiles are used for pins and rests on a tilt-tray mail sorting machine.


Hundreds of profile designs are available from Gates Mectrol's extensive mold inventory. Our applications engineers can work with you to design any profile to meet your specific requirements. Tooling charges are minimal for most customized designs.

Although it is possible to have nearly any design utilizing welded profiles, ultimate performance for your application can be achieved by following the design guidelines outlined below:

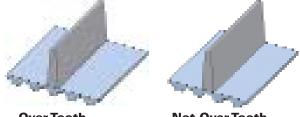
1. Spacing of Profiles

It is recommended that the profile spacing, A, correspond with the pitch of the belt teeth. This allows for the best spacing tolerances, and minimizes the effects of the belt's overall length tolerance on the profile spacing.

Profiles can be spaced on non-pitch increments. However, if non-pitch spacing is used, the cumulative tolerance of the belt length must be considered.

Profile Spacing	Over tooth Non-cumulative	Not over tooth		
0.2"≤A<1.0"	±0.015"	±0.020"		
5mm≤A<25.4mm	±0.38mm	±0.5mm		
1.0"≤A<9.0"	±0.020"	±0.025"		
25.4mm≤A<228.6mm	±0.5mm	±0.6mm		
9.0"≤A<18.0"	±0.025"	±0.030"		
228.6mm≤A<457.2mm	±0.6mm	±0.8mm		
18.0" A<27.0"	±0.030"	±0.035"		
457.2mmA<685.8mm	±0.8mm	±0.9mm		
27.0"≤A<36.0"	±0.035"	±0.040"		
685.8mm≤A<914.4mm	±0.9mm	±1.0mm		

Profile Spacing Tolerance


For spacing greater than 36.0", add 0.006" per ft.

For spacing greater than 914.4mm, add 0.15mm per 305mm. Tighter tolerances on profile spacing are available. Contact a Gates Mectrol Applications Engineer for more information.

2. Dimensions of Profiles

The most important consideration while dimensioning a profile is the size of the base of the profile, (the "foot" of the profile), and the position of the profile on the belt.

The profile thickness can affect the flexibility of the belt, and can determine the minimum allowable pulley diameter. The flexibility of the belt can be maximized, however, by positioning the profile directly over the tooth of the belt.

Over Tooth

Not Over Tooth

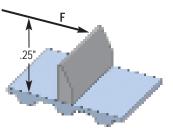
As the thickness of the foot of the profile increases, the minimum pulley diameter in the system must be increased according to the table on the next page.

The molded tolerances of the profile itself i.e. thickness, height, length, etc. are controlled within \pm .010". The installed height tolerance of a profile is typically \pm .010", -.020".

Gates Mectrol's applications engineers will be happy to assist in all regards where tolerances are an issue. Please contact: apps@gatesmectrol.com.

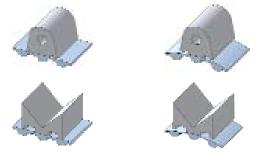
	Minimum Number of Pulley Teeth For Profiles Over a Tooth*										
Profile "Foot" Thickness	Inch mm	1/16 1.60	1/8 3.00	3/16 5.00	1/4 6.00	5/16 8.00	3/8 10.00	7/16 11.00	1/2 13.00	5/8 16.00	3/4 19.00
Pitch XL		10	10	18	25	40	50	60	100		
L		12	12	12	18	30	40	50	60	100	
Н		14	14	14	14	18	25	35	45	80	100
XH		18	18	18	18	18	18	18	20	35	50
T5		12	12	18	25	40	50	60	100		
AT5, ATL5		15	15	18	25	40	50	60	100		
T10		16	16	16	16	18	25	35	45	80	100
AT10, ATL10, ATL1	0-HF	18	18	18	18	22	25	35	45	80	100
T20, AT20, ATL20		18	18	18	18	18	18	18	20	35	50
HTD5, STD5		14	14	16	25	40	50	60	100		
HTD8, STD8		20	20	20	24	30	40	50	60	100	
HTD14, HTDL14		28	28	28	28	28	28	30	30	50	72

Minimum Number of Pulley Teeth For Profiles Not Over a Tooth*

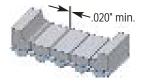

Profile "Foot" Thickness	Inch mm	1/16 1.60	1/8 3.00	3/16 5.00	1/4 6.00	5/16 8.00	3/8 10.00	7/16 11.00	1/2 13.00	5/8 16.00	3/4 19.00
Pitch XL		12	30	45	50	60	100				
L		12	20	40	45	55	60	70	80	100	
Н		14	14	25	30	45	50	55	65	80	100
ХН		18	18	20	30	40	45	50	54	58	60
T5		12	30	45	50	60	100				
AT5, ATL5		15	30	45	50	60	100				
T10, AT10, ATL10, AT	TL10-HF	18	20	30	40	45	50	55	65	80	100
T20, AT20, ATL20		18	18	20	30	40	45	50	54	58	60
HTD5, STD5		18	30	45	50	60	100				
HTD8, STD8		20	20	40	45	55	60	70	80	100	
HTD14, HTDL14		28	28	30	42	58	64	72	78	82	86

*Minimum number of pulley teeth must be equal to or greater than minimum shown in the appropriate Belt Specifications Table.

3. Profile Strength.


The strength, and therefore capacity of the profile, depends primarily on the size of the welded profile foot.

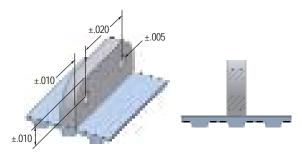
The strength of the profile is affected by the type and direction of the force applied to it. Under high loads, the failure mode will normally be either bending and distortion of the profile and belt, or in some cases, the polyurethane may actually tear. With a load introduced against the profile at a point 1/4" above the belt surface, the strength of the profile is 2,500 lbs. per square inch of welded foot area, or 1724 N/cm².


4. Wide Base Profiles, and Profiles With Relief

For profiles requiring a wide base, such as pushers, one foot should be left unwelded. This allows for flexing around the pulley yet it remains rigid when loaded.

5. Segmented Profiles

When large profiles are required as carriers, they must be either segmented or slotted. This is necessary to allow flexing around the pulley. On the flat conveyor surface, the profiles remain intact.



6. Profiles With Holes

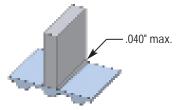
Profiles with holes for securing paddles or other attachments can be produced. Holes are either drilled before bonding, or are molded into the profile depending upon the volume and requirements of the application.

Tolerances of the hole placement depends upon whether the holes are drilled or molded. The tolerance of the hole from the belt surface is subject to the melting process of the foot of the profile and the surface of the belt.

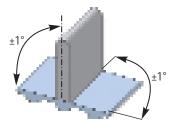
Generally, tolerances are as shown below. However, tighter tolerances are possible. Please consult our Applications Engineering Department.

7. Profiles With Inserts

Profiles can be molded with metallic inserts. These are particularly useful in some applications to replace attachment chain.

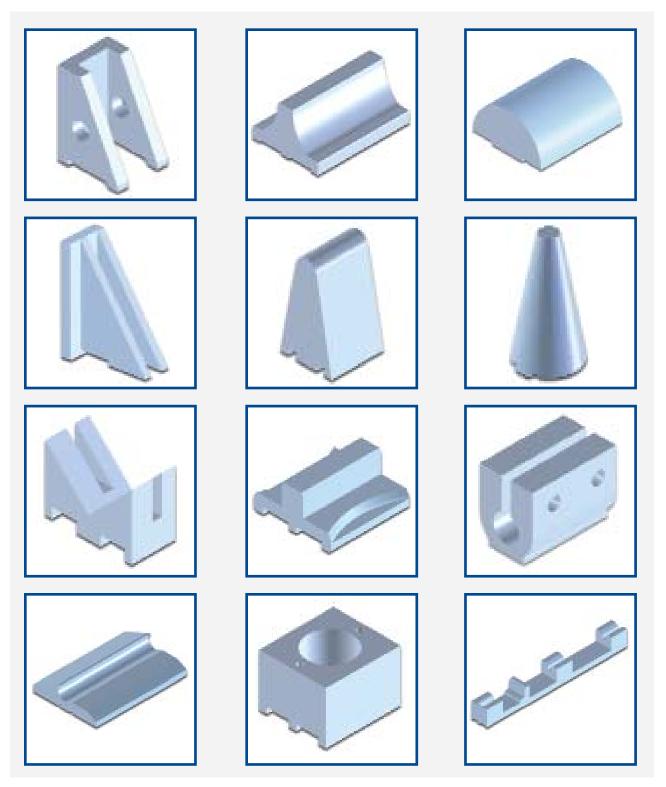

The actual inserts can either be manufactured by Gates Mectrol or provided by the customer.

8. Flash Bead


During the welding process, a bead of urethane develops at the meeting point of the profile and belt.

The welding bead is removed, "de-flashed", as necessary.

9. Perpendicularity


All profiles are perpendicular to 1°.

10. Ordering

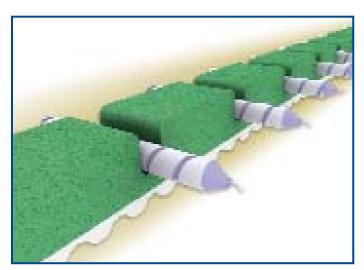
When ordering a profiled belt, it is advisable to submit a drawing of the profiled belt. For your convenience, standard drawing forms are available from our Applications Engineering Department.

Once a design is finalized, Gates Mectrol will submit a drawing to the customer for approval. This custom belt-drawing number should then be used for future ordering.

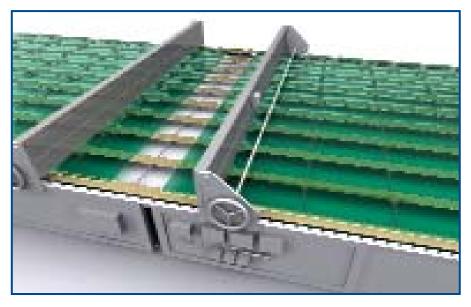
Gates Mectrol InStock profiles offer cost savings and fast delivery. Our most requested profiles are available with a seven day lead time for a standard or stock belt. Visit our web site for a review of our most popular profiles.

Our Application Engineering staff is available to you at apps@gatesmectrol.com or 1-800-394-4844

If your product requires special handling on the production line, you may want to consider customized backings. We can produce virtually any of our timing belts with almost any combination of backing materials.


Features

A customized backing can provide:


- A dramatic increase or decrease in the co-efficient of friction
- Varying levels of cushioning and durability through material thickness and hardness selection
- High release properties
- Static conductivity
- Various levels of chemical resistance
- An ability to alter wear characteristics

Application Characteristics

- High friction for feeding or separating applications
- Low friction for light feed or accumulation requirements
- Ability to conform to unusual product shapes
- Combine friction with vacuum for ultimate grab

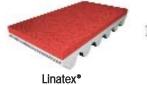
A unique foam backing is used to carefully grasp and transport candles for cooling.

In glass conveying applications the use of a specially constructed, high friction backing allows for glass shards to be discharged from the belt.

Perform a wide variety of functions

Many applications require belts with unique surface characteristics. A wide variety of co-extruded as well as post-laminated backings are available solving your toughest application requirements. Specifications follow.

- Special nylon fabric can be added to the belt back or tooth side during the manufacturing process. This reduces the coefficient of friction for sliding surfaces or product accumulation
- High friction surfaces
- A variety of materials can be added for vibration dampening
- An antistatic surface is available with a resistivity of less than 10⁶ Ohms/Square


Polyurethane

Gates Mectrol urethane backings are available in several different varieties. Some are produced as an integral part of the belt, some co-extruded and some are fused to the belt in a secondary operation. Available in different durometers, with different coefficients of friction, urethane backings are the toughest and most durable backing material.

Rubber

Feeding applications generally require extremely high friction. Rubber can provide this high friction, even while wet. Some rubber backings also offer antistatic properties, higher temperature ratings, and good chemical and abrasion resistance.

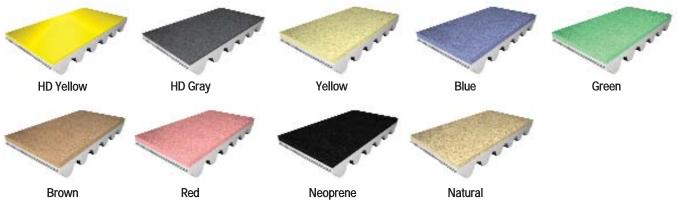
Linaplus FG™

Tan Natural Rubber

Nitrile Rubber

Thermoplastic Rubber

Silicone


Silicone rubber combines high friction along with excellent release and heat resistance.

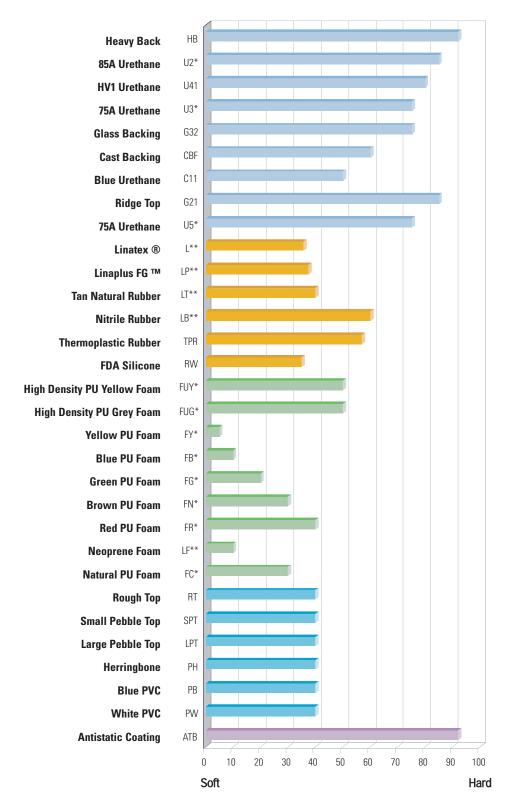
FDA Silicone

Foam

Many applications require a combination of friction and the ability to conform to unusual product shapes. Gates Mectrol foam backings are available in different densities for various compliance, cushioning and friction surfaces. Belts can be constructed with a foam layer for cushioning and a tougher high friction outer layer.

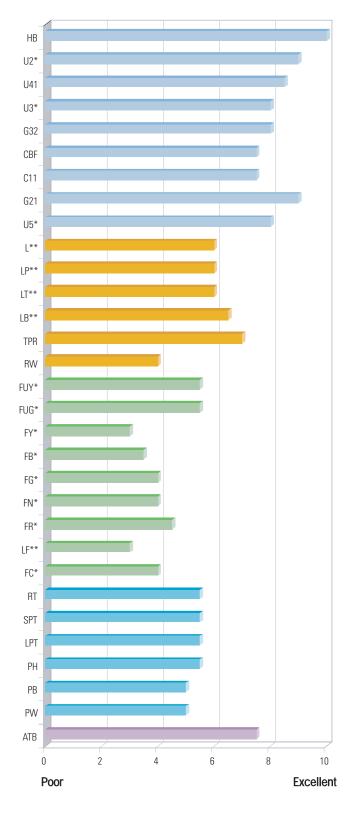
PVC

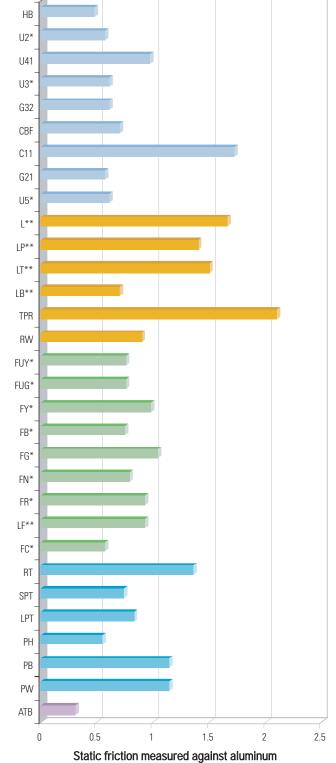
Available with unusual surface patterns and characteristics, PVC backings offer a well bonded, economical solution with very good wear properties.


White PVC

Specialty Backings

Gates Mectrol can develop nearly any type of backing for unusual applications. Antistatic backing is an example.




Antistatic Coating

Relative Hardness

Relative Abrasion Resistance

Static Coefficient of Friction

Polyurethane

 1		
HB	Heavy Back	Same as standard 92 A base material. Very tough and durable.
U2*	85A Urethane	Softer PU than base material. Higher friction, more flexibility, similar durability.
U41	HV1 Urethane	Specifically compounded for very high coefficient of friction.
U3*	75A Urethane	Softer version of standard urethane. Better friction, more compression, flexible, very tough.
G32	Glass Backing	Longitudinal groove pattern for glass conveying. Good friction and grooves for holding back abrasives and dirt.
CBF	Cast Backing	High friction with no seam or bonding issues to belt. Available on belts under 600 mm diameter.
C11	Blue Urethane	Extremely high coefficient of friction. Ideal for feeding applications, retains abrasion resistance.
G21	Ridge Top	Durable backing with longitudinal ridges. Ideal for conveying oily steel.
U5*	75A Urethane	Softer, high friction with very good abrasion resistance.

Rubber

L**	Linatex ®	High friction, pure gum rubber. Good abrasion resistance, excellent for pulling and feeding applications.					
LP**	Linaplus FG ™	FDA approved, high friction pure gum rubber.					
LT**	Tan Natural Rubber	Natural pure gum rubber, high friction.					
LB**	Nitrile Rubber	Oil and fuel resistant, synthetic rubber.					
TPR	Thermoplastic Rubber	High friction, ideal for conveying applications. Good oil, ozone and abrasion resistance.					

Silicone Rubber

	RW	FDA Silicone	High release, high friction, FDA approved.	
--	----	--------------	--	--

Foam

FUY	High Density PU Yellow Foam	High friction. Very good abrasion resistance. Excellent for paper feed applications.
FUG	High Density PU Gray Foam	High friction. Very good abrasion resistance. Excellent for paper feed applications.
FY*	Yellow PU Foam	Lower density. Excellent cushioning and conforming to products while providing good friction.
FB*	Blue PU Foam	Low density. Excellent cushioning and conforming to products while providing good friction.
FG*	Green PU Foam	Mid range density, firmer holding and cushioning, excellent friction.
FN*	Brown PU Foam	Mid range density, firmer holding and cushioning, excellent friction.
FR*	Red PU Foam	Upper range density, good cushioning, friction and abrasion resistance.
LF**	Neoprene Foam	Black neoprene good abrasion resistance, compliance and static conductivity.
FC*	Natural PU Foam	Celloflex.

PVC

RT	Rough Top	Intricate surface modeling, excellent friction surfaces. Great for glass and incline conveyors.
SPT	Small Pebble Top	Textured surface with small nubs for non-slip surface.
LPT	Large Pebble Top	Textured surface with larger nubs for non-slip surface.
PH	Herringbone	Raised herringbone pattern for non-slip and dispersing surface.
РВ	Blue PVC	Smooth high sheen, high friction surface.
PW	White PVC	Smooth white, FDA high friction surface for non-abrasive applications.

Special

ATB

Antistatic Coating

Extremely good conductivity characteristics for electronic and explosives conveying applications.

Backings

	Hardness Shore A / Density Kg/m (3)	Material Thickness mm	Abrasion Resistance Rating‡	Static Coefficient of Friction †	Kinetic Coefficient of Friction †	Max. Temp. Degrees C	Pulley Diameter Factor	Oil Resistance	Color
urethane									
HB	92	2	10	0.5	0.5	80	30	E	Clear
U2*	85	2 or 3	9	0.6	0.5	80	30	E	Clear
U41	80	1	8.5	1.0	0.8	80	30	E	Clear
U3*	75	2 or 3	8	0.6	0.6	70	30	E	Clear
G32	75	5	8	0.6	0.6	70	Ø 100mm	E	Clear
CBF	60	1 to 3	7.5	0.7	0.5	70	25	E	Clear
C11	50	1.5	7.5	1.7	0.9	60	20	E	Blue
G21	85	3	9	0.6	0.5	80	Ø 100mm	E	Clear
U5*	75	2 or 3	8	0.6	0.6	70	25	E	White
ber									
L**	35	1/16" to 1/2"	6	1.6	1.6	60	20	Р	Red
LP**	38	1/16" to 3/16"	6	1.4	1.4	60	20	Р	White
LT**	40	1/16" to 1/4"	6	1.5	1.5	60	20	Р	Tan
LB**	60	1/16" to 1/4"	6.5	0.7	0.5	110	25	E	Black
TPR	57	3	7	2.1	1.4	105	25	G	Red
one Rubl	Der								
RW	35	1 or 2	4	0.9	0.9	200	20	Р	White
n									
FUY*	50	2 to 5	5.5	0.8	0.8	60	30	E	Yellow
FUY* FUG*	50	2 to 5	5.5	0.8	0.8	60	30	E	Gray
FUY* FUG* FY*	50 - / 160	2 to 5 6 to 12	5.5 3	0.8	0.8 1.0	60 60	30 15	E	Gray Yellow
FUY* FUG* FY* FB*	50 - / 160 - / 220	2 to 5 6 to 12 6 to 12	5.5 3 3.5	0.8 1.0 0.8	0.8 1.0 0.8	60 60 60	30 15 15	E E E	Gray Yellow Blue
FUY* FUG* FY* FB* FG*	50 - / 160 - / 220 20 / 300	2 to 5 6 to 12 6 to 12 6 to 12	5.5 3 3.5 4	0.8 1.0 0.8 1.0	0.8 1.0 0.8 1.0	60 60 60 60	30 15 15 15	E E E	Gray Yellow Blue Green
FUY* FUG* FY* FB* FG* FN*	50 - / 160 - / 220 20 / 300 30 / 400	2 to 5 6 to 12 6 to 12 6 to 12 6 to 12 6 to 12	5.5 3 3.5 4 4	0.8 1.0 0.8 1.0 0.8	0.8 1.0 0.8 1.0 0.8	60 60 60 60 60	30 15 15 15 15 15	E E E E E	Gray Yellow Blue Green Brown
FUY* FUG* FY* FB* FG* FN* FR*	50 - / 160 - / 220 20 / 300 30 / 400 40 / 500	2 to 5 6 to 12 6 to 12 6 to 12 6 to 12 6 to 12 6 to 12	5.5 3 3.5 4 4 4.5	0.8 1.0 0.8 1.0 0.8 0.9	0.8 1.0 0.8 1.0 0.8 0.9	60 60 60 60 60 60	30 15 15 15 15 15 20	E E E E E E	Gray Yellow Blue Green Brown Red
FUY* FUG* FY* FB* FG* FN*	50 - / 160 - / 220 20 / 300 30 / 400	2 to 5 6 to 12 6 to 12 6 to 12 6 to 12 6 to 12	5.5 3 3.5 4 4	0.8 1.0 0.8 1.0 0.8	0.8 1.0 0.8 1.0 0.8	60 60 60 60 60	30 15 15 15 15 15	E E E E E	Gray Yellow Blue Green Brown
FUY* FUG* FY* FB* FG* FG* FR* LF**	50 - / 160 - / 220 20 / 300 30 / 400 40 / 500 - / 250	2 to 5 6 to 12 6 to 12 6 to 12 6 to 12 6 to 12 6 to 12 1/8" to 1/2"	5.5 3 3.5 4 4 4,5 3	0.8 1.0 0.8 1.0 0.8 0.9 0.9	0.8 1.0 0.8 1.0 0.8 0.9 0.9	60 60 60 60 60 60 60 60	30 15 15 15 15 20 15	E E E E E E A	Gray Yellow Blue Green Brown Red Black
FUY* FUG* FY* FB* FG* FN* FR* LF** FC*	50 - / 160 - / 220 20 / 300 30 / 400 40 / 500 - / 250	2 to 5 6 to 12 6 to 12 6 to 12 6 to 12 6 to 12 6 to 12 1/8" to 1/2"	5.5 3 3.5 4 4 4,5 3	0.8 1.0 0.8 1.0 0.8 0.9 0.9	0.8 1.0 0.8 1.0 0.8 0.9 0.9	60 60 60 60 60 60 60 60	30 15 15 15 15 20 15	E E E E E E A	Gray Yellow Blue Green Brown Red Black Natura
FUY* FUG* FY* FB* FG* FR* FR* LF** FC*	50 -/160 -/220 20/300 30/400 40/500 -/250 30/400	2 to 5 6 to 12 6 to 12 6 to 12 6 to 12 6 to 12 1/8" to 1/2" 2 to 5	5.5 3 3.5 4 4 4 4.5 3 4	0.8 1.0 0.8 1.0 0.8 0.9 0.9 0.9 0.6	0.8 1.0 0.8 1.0 0.8 0.9 0.9 0.9 0.5	60 60 60 60 60 60 60 60	30 15 15 15 15 20 15 15	E E E E E A E	Gray Yellow Blue Green Brown Red Black
FUY* FUG* FY* FB* FG* FN* FR* LF** FC*	50 - / 160 - / 220 20 / 300 30 / 400 40 / 500 - / 250 30 / 400 40	2 to 5 6 to 12 6 to 12 6 to 12 6 to 12 6 to 12 1/8" to 1/2" 2 to 5 4.5	5.5 3 3.5 4 4 4.5 3 4 5.5 5.5 5.5	0.8 1.0 0.8 1.0 0.8 0.9 0.9 0.9 0.6 1.4 0.7	0.8 1.0 0.8 1.0 0.8 0.9 0.9 0.9 0.5	60 60 60 60 60 60 60 60 60	30 15 15 15 20 15 15 15 15 0 90mm Ø 25mm	E E E E E A E P	Gray Yellow Blue Green Brown Red Black Natura Blue-gree White
FUY* FUG* FY* FB* FG* FR* FR* LF** FC* RT	50 -/160 -/220 20/300 30/400 40/500 -/250 30/400 40 40	2 to 5 6 to 12 6 to 12 6 to 12 6 to 12 1/8" to 1/2" 2 to 5 4.5 1.5 6	5.5 3 3.5 4 4 4 4.5 3 4 5.5 5.5 5.5 5.5	0.8 1.0 0.8 1.0 0.8 0.9 0.9 0.9 0.6 1.4 0.7 0.8	0.8 1.0 0.8 1.0 0.8 0.9 0.9 0.5 1.3 0.6 0.7	60 60 60 60 60 60 60 60 60 60 60 60	30 15 15 15 20 15 15 15 0 90mm Ø 25mm Ø 40mm	E E E E A E E P P	Gray Yellow Blue Green Brown Red Black Natura Blue-gree White White
FUY* FUG* FY* FB* FG* FR* FR* LF** FC* RT SPT LPT	50 -/160 -/220 20/300 30/400 40/500 -/250 30/400 40 40 40 40 40	2 to 5 6 to 12 6 to 12 6 to 12 6 to 12 6 to 12 1/8" to 1/2" 2 to 5 4.5 1.5 6 4.5	5.5 3 3.5 4 4 4.5 3 4 5.5 5.5 5.5 5.5 5.5 5.5	0.8 1.0 0.8 1.0 0.8 0.9 0.9 0.6 1.4 0.7 0.8 0.6	0.8 1.0 0.8 1.0 0.8 0.9 0.9 0.5 1.3 0.6 0.7 0.3	60 60 60 60 60 60 60 60 60 60 60 60 60	30 15 15 15 20 15 15 15 0 90mm Ø 25mm Ø 40mm Ø 90mm	E E E E E A E P P P P	Gray Yellow Blue Green Brown Red Black Natura Blue-gree White White White
FUY* FUG* FY* FB* FG* FR* FR* LF** FC* RT SPT LPT PH	50 -/160 -/220 20/300 30/400 40/500 -/250 30/400 40 40 40	2 to 5 6 to 12 6 to 12 6 to 12 6 to 12 1/8" to 1/2" 2 to 5 4.5 1.5 6	5.5 3 3.5 4 4 4 4.5 3 4 5.5 5.5 5.5 5.5	0.8 1.0 0.8 1.0 0.8 0.9 0.9 0.9 0.6 1.4 0.7 0.8	0.8 1.0 0.8 1.0 0.8 0.9 0.9 0.5 1.3 0.6 0.7	60 60 60 60 60 60 60 60 60 60 60 60	30 15 15 15 20 15 15 15 0 90mm Ø 25mm Ø 40mm	E E E E E A E E P P P	Gray Yellow Blue Green Brown Red Black Natura Blue-gree White White
FUY* FUG* FY* FG* FR* FR* LF** FC* RT SPT LPT PH PB	50 -/160 -/220 20/300 30/400 40/500 -/250 30/400 40 40 40 40 40 40	2 to 5 6 to 12 6 to 12 6 to 12 6 to 12 1/8" to 1/2" 2 to 5 4.5 1.5 6 4.5 1 or 2	5.5 3 3.5 4 4 4.5 3 4 4 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	0.8 1.0 0.8 1.0 0.8 0.9 0.9 0.9 0.6 1.4 0.7 0.8 0.6 1.1	0.8 1.0 0.8 1.0 0.8 0.9 0.9 0.5 1.3 0.6 0.7 0.3 1.1	60 60 60 60 60 60 60 60 60 60 60 60 60 6	30 15 15 15 20 15 15 15 15 0 90mm Ø 25mm Ø 40mm Ø 90mm Ø 90mm	E E E E A E P P P P P P	Gray Yellow Blue Green Brown Red Black Natura Blue-gree White White Blue-gree

10 = very high resistance
† Friction measured against aluminum
Oil resistance: E = Excellent G = Good P = Poor A = Acceptable

Note: Pulley diameter must be greater than or equal to the minimum pulley required for a given belt section. See belt specifications.

Fabrication Capabilities

Gates Mectrol can provide you with a wide range of base manufacturing modifications. But if your application requires more, we also provide a full range of secondary fabrication possibilities.

Whether grinding edges and surfaces to tight tolerances, punching and machining holes and slots, or CNC machining of three dimensional contours, Gates Mectrol can provide a complete solution.

Features

- Nearly unlimited customizing options
- Ground tolerances on nearly any dimension for extra precision
- Unusual shapes, contours and configurations
- Holes, slots, and any CNC machined shape in the belt surface
- Combination of primary tooling and secondary machining to achieve any design potential

Battery conveying, custom ground urethane belt holds and transports batteries.

Application Characteristics

- Vacuum conveying belts
 machined tooth side and perforations
- Precision machined belts for precise movement of product
- Distinct product orientation and location for automated process steps

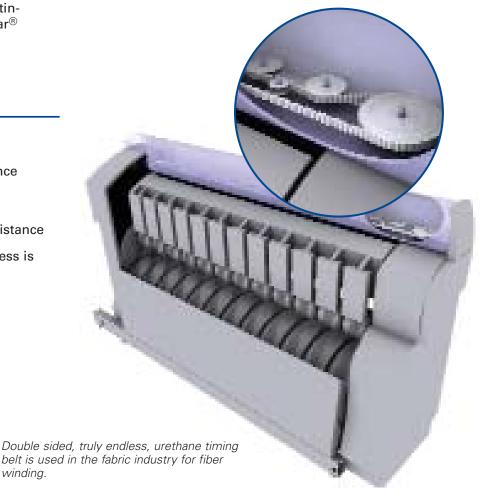
Squaring machine utilizes custom belts with precision ground thickness and width.

Our Application Engineering staff is available to you at apps@gatesmectrol.com or 1-800-394-4844

Truly Endless Belts

Certain power transmission and high-performance positioning applications require more strength and stiffness than a welded belt can offer.

Gates Mectrol offers two types of truly endless belts for the job.


- Gates Mectrol F-Series belts, flex belts, are made to custom lengths ranging from 2.5 to 12.5 meters. A unique process provides the flexibility to have custom sized belts without expensive tooling.
- Gates Mectrol S-Series belts, cast belts, are produced on fixed molds and have a continuously wound steel or Kevlar® cord. They are available in stock sizes.

Application Characteristics

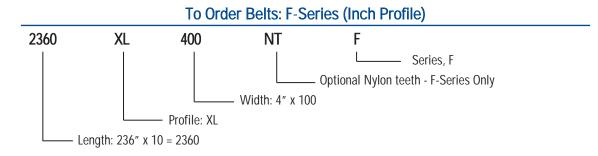
- Power transmission
- High power, high performance conveying
- Harsh environment - Abrasion and chemical resistance
- Applications where cleanliness is critical

Features

- Helically wound cords for high strength, truly endless power transmission capabilities
- High quality, thermo-set polyurethane designed specifically for timing belt applications (S-Series) or thermoplastic urethane for longer length belts (F-Series)
- Available with either steel or Kevlar[®] reinforcement
- Standard molded sleeves (S-Series) or custom length belts available - up to 12.5 meters (F-Series)
- Nylon tooth surface option on F-Series for quieter operation

Our Application Engineering staff is available to you at apps@gatesmectrol.com or 1-800-394-4844

winding.



F-Series Belts

F-Series belts, **flex belts**, are produced with steel or Kevlar[®] reinforcing cords and the same tough urethane as Gates Mectrol's standard linear belts.

Belt Section	XL	L	Н	XH	Т5	T10	T20	AT5	AT10	AT20	HTD5	HTD8
Minimum Length	99.0″	99.0″	99.0″	99.0″	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
Maximum Length	236″	492″	492″	492″	10.0	12.5	12.5	10.0	12.5	12.5	10.0	12.5
Minimum Width	.25″	.25″	.50″	1.0″	10mm	10mm	16mm	10mm	16mm	25mm	10mm	16mm
Maximum Width	4.0″	6.0″	4.0"	4.0″	100mm	100mm	150mm	100mm	100mm	150mm	150mm	150mm
Double Sided	Up to 196"	No	Up to 196"	No	Up to 5 meters	Up to 5 meters	No	Up to 5 meters	Up to 5 meters	No	Up to 5 meters	Up to 5 meters

F-Series Belts

Inch Profile Belts - F-Series

Belt Section		XL	L	Н	XH
Pitch		.200"	.375"	.500"	.875"
Ultimate Tensile Strength	Lb/in	810	1225	1665	2965
	N/25mm	3600	5460	7410	13200
Max Allowable Tension per Inch/mm Belt Width	Lb/in	200	305	415	740
	N/25mm	900	1365	1855	3300
Allowable Effective Tension	Lb/in	180	360	440	880
for Belt Teeth	N/25mm	790	1580	1930	3855
Specific Belt Weight w _b	Lb	0.037	0.058	0.067	0.179
(Weight/ft/inch)	kg	0.017	0.026	0.030	0.081
Minimum Number of Pulley Teeth		10	10	14	18
Min. Pitch Diameter		.64″	1.19″	2.23"	5.01"
Minimum Diameter	in	1.125	2.375	3.125	5.875
of Tension Idler	mm	30	60	80	150
Tomporatura Dango			$20^{\circ}C$ to $100^{\circ}C$ ()	17/ °L)	

Temperature Range

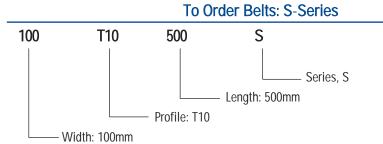
-30°C to +80°C (-22°F to 176°F)


Metric Profile Belts - F-Series

Belt Section	Belt Section			T10	T10HF	AT10	T20	AT20	HTD5	HTD8
Pitch	Pitch			10mm	10mm	10mm	20mm	20mm	5mm	8mm
Ultimate Tensile Strength	Lb/in	780	1395	1755	2475	2965	2965	4675	2475	2965
	N/25mm	3480	6200	7800	11000	13200	13200	20800	11000	13200
Max Allowable Tension per Inch/mm Belt Width	Lb/in	195	350	440	620	740	740	1170	620	740
	N/25mm	870	1550	1950	2750	3300	3300	5200	2750	3300
Allowable Effective Tension for Belt Teeth	Lb/in	200	290	380	380	585	715	1220	220	410
	N/25mm	880	1270	1665	1665	2565	3135	5345	965	1800
Specific Belt Weight w _b	Lb	0.048	0.070	0.097	0.105	0.121	0.160	0.208	0.090	0.132
(Weight/meter/cm)	kg	0.022	0.032	0.044	0.048	0.055	0.072	0.095	0.041	0.060
Minimum Number of Pulley Tee	th	10	15	16	12	18	15	18	14	20
Min. Pitch Diameter		16mm	24mm	51mm	38mm	57mm	96mm	115mm	22mm	51mm
Minimum Diameter	in	1.125	2.375	3.125	2.375	4.750	4.750	7.125	2.375	4.750
of Tension Idler	mm	30	60	80	60	120	120	180	60	120
Tomporaturo Pango					20°C to 180	°C (22°E t	5 176°E)			

Temperature Range

-30°C to +80°C (-22°F to 176°F)


To Order Belts: F-Series (Metric Profile)

S-Series Belts

S-Type belts, **cast belts**, are produced on discreet molds and are available from stock in the sizes listed. For belt lengths not listed, please consult a Gates Mectrol applications engineer.

	Bel	t Length (r	nm)		Bel	t Length (r	nm)			Bel	Belt Length (r
No. of Teeth	T2.5	Т5	T5 DL	No. of Teeth	T2.5	Т5	T5 DL		No. of Teeth		No. of Teeth T2.5 T5
30		150		82		410	410		138	138	138 690
33		165		84		420			140	140	140 700
36		180		89		445			144	144	144 720
37		185		90		450			150	150	150 750
40		200		91		455			152	152 380	152 380
43		215		92	230				155	155	155 775
44		220		95		475			158	158 395	158 395
45		225		96		480	480		163	163	163 815
48	120			98	245				168	168 420	168 420 840
49		245		100		500			172	172	172
50		250		102		510			180	180	180 900
51		255		103			515		188	188	188 940
52		260	260	105		525			192	192 480	192 480
54		270		106	265				198	198	198 990
55		275		109		545			200	200 500	200 500
56		280		110		550			215	215	215 1075
59	145	295		112		560			216	216 540	216 540
61		305		114	285				220		
63		315		115		575			240	240 600	240 600
64	160			116	290				243	243	243 1215
66		330		118			590		248	248 620	248 620
68		340		122	305	610			260	260 650	260 650
70		350		124		620	620		263		
71	177.5	355		126		630			276		
72	180			127	317.5				280		
73	182.5	365		128		640			312		
74	185			130		650			366		
78		390		132	330	660			380		
80	200	400		135		675					

S-Series Belts

	Belt Le	ngth (mm)		Belt Ler	ngth (mm)
No. of Teeth	T10	T10 DL	No. of Teeth	T10	T10 DL
26	260		96	960	
33	330		97	970	
37	370		98	980	980
40	400		101	1010	
41	410		108	1080	
44	440		110	1100	
45	450		111	1110	
50	500		114	1140	
51	510		115	1150	
52	520	520	113	1210	1210
		520	121		1210
53	530			1240	
56	560	(125	1250	
60	600	600	130	1300	
61	610		132	1320	
63	630	630	135	1350	
66	660		139	1390	
69	690		140	1400	
70	700		142	1420	
72	720	720	145	1450	
73	730		146	1460	
75	750		150	1500	
78	780		156	1560	
81	810		161	1610	
84	840	840	175	1750	
88	880	0.10	178	1780	
89	890		188	1880	
90	900		196	1960	
90 91			225		
	910	000	220	2250	
92	920	920			

Available Widths

T2.5	4mm up to 200mm
T5	6mm up to 200mm
T10	10mm up to 200mm
AT5	6mm up to 200mm
AT10	16mm up to 200mm

91	455	
92		920
96		960
98		980
100	500	
101		1010
105		1050
108		1080
109	545	
115		1150
120	600	1200
121		1210
122	610	
125		1250
126	630	
132	660	1320
140		1400
144	720	
150	750	1500
156	780	
160		1600
165	825	
170		1700
180		1800
195	975	
210	1050	
225	1125	
300	1500	

Field Welders

Minimize down-time, reduce manufacturing costs

Features

- Simple design to produce endless belts in the field
- Pre-programmed, state-of-theart temperature controls
- Wide selection of inch and metric pitch models
- Easy, step-by-step processing instructions
- Complete turnkey package

Tension Meter

Achieving correct static belt tension is easy

Gates Mectrol TC6 Tension Meter determines correct belt tension - critical for belt peak performance.

- Tension the belt too low:
 - Belt may ratchet (skip teeth on pulley)
 - Belt life may be decreased due to increased flex fatigue
- Tension the belt too high:
 - System bearing life may be decreased due to excessive bearing loads
 - Belt life may be decreased due to excessive belt tensile loads

The natural frequency of a belt span is a function of the static tension, span length and belt span mass. The TC6 measures and displays the belt's natural frequency. Using the measured frequency in a simple formula determines the belt's static tension.

The TC6 uses an optical sensor to determine the belt's natural frequency, and therefore it can be used on belts made of non-ferrous (as well as ferrous) materials. The TC6 also comes standard with an RS232 port and software for downloading the measurements to a MS Excel spreadsheet.

Technical Specifications

 Measuring Range: 	<10 Hz (up to >800 Hz)
 Accuracy: 	± 3% of the measured value (± 1 digit)
• Measured Value Reading:	6-digit LCD for the measured value and other parameters (memory, location, time, etc.)
• L × W × H:	120mm × 60mm × 25mm; Probe Neck is approximately 20cm long
• Weight:	Approximately 180g
Probe:	Opto-Electronic method using visible, red light
• Light Exit:	At the lateral end of a flexible and rotating neck (approx. 20cm long)
• Battery:	9V monoblock battery (in battery compartment) 3V CR2032 button cell (inside the gauge)
• Data Transfer:	RS232, 9600 Baud, N81

Technical Design Tools Online

Gates Mectrol's belt design tools make selecting the right belt for your application easy anytime: http://apps.gatesmectrol.com/

Gates Mectrol has introduced a new suite of online design tools for calculating all types of urethane timing belt applications.

These new design tools are, by far, industry state-of-the-art, offering the most comprehensive, easy to use and accurate calculations available.

For linear and rotary positioning applications, synchronous conveying or power transmission, simply enter all of your known parameters, and these programs will guide you through step-bystep calculations, resulting in the selection of the most appropriate belt for your application. Included with your output will be information which is "total system" inclusive, providing necessary data for selecting all related drive components, as well as for programming electronic controls.

Log on to www.gatesmectrol.com today, and register for instant access to the industry's best calculation tools available.

For those without Internet access, the following Belt Selection Guide, offers a manual approach to the basics of our belt selection applications.

Belt Selection Guide

Many conveying timing belts operate at low speeds and minimal loads. This eliminates the need for extensive calculations and a simplified approach to belt selection can be used. For these lightly loaded applications, the belt can be selected according to the dimensional requirements of the system, product size, desired pulley diameter, conveyor length, etc.

The belt width **b** is often determined according to the size of the product conveyed, and as a rule, the smallest available belt pitch is used. For proper operation, the pre-tension T_j should be set as follows:

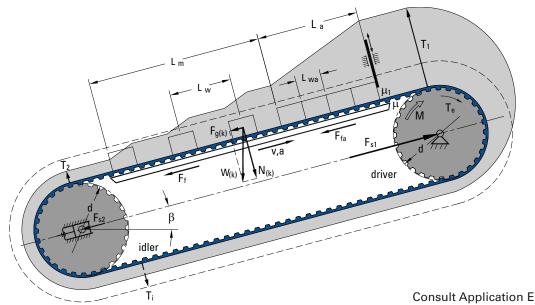
 $\begin{array}{l} T_{i}\approx 0.3 \bullet b \bullet T_{1all} \\ \text{where: } T_{i} &= \text{belt pre-tension} \\ T_{1all} &= \max \text{ allowable belt tension for} \\ 1^{''} \text{ or } 25 \text{mm wide belt (see Table 1 or Table 2)} \\ \text{U.S. customary units: } T_{i} \ [Ib], T_{1all} \ [Ib/in], b \ [in] \\ \text{Metric units: } T_{i} \ [N], T_{1all} \ [N/25 \text{mm}], b \ [mm]. \end{array}$

For all applications where the loads are significant, the following step-by-step procedure should be used for proper belt selection.

Step 1. Determine Effective Tension

The effective tension T_e at the driver pulley is the sum of all individual forces resisting the belt motion. The individual loads contributing to the effective tension must be identified and calculated based on the loading conditions and drive configuration. However, some loads cannot be calculated until the layout has been decided.

To determine the effective tension *T*_{*e*} use one of the following methods for either conveying or linear positioning.


Conveying

 T_e for conveying application is primarily the sum of the following forces (see Figs. 1 and 2).

1. The friction force F_f between the belt and the slider bed resulting from the weight of the conveyed material.

2. The gravitational load **F**_g to lift the material being transported on an inclined conveyor.

$$F_g = w_m \cdot L_m \cdot sin B$$

Consult Application Engineering at apps@gatesmectrol.com 1-800-394-4844

```
Fig. 1
```

Belt Selection Guide

3. The friction force *F_{fv}* resulting from vacuum in vacuum conveyors.

$$\mathsf{F}_{\mathsf{fv}} = \mu \bullet \mathsf{P} \bullet \mathsf{A}_{\mathsf{v}}$$

where: P = pressure (vacuum) relative to atmospheric A_v = total area of vacuum openings U.S. units: F_{fv} [Ib], P [Ib/ft²], A_v [ft] Metric units: F_{fv} [N], P [Pa], A_v [m]

The formula above assumes a uniform pressure and a constant coefficient of friction.

4. The friction force F_{fa} over the accumulation length in material accumulation applications.

 $F_{fa} = (\mu + \mu_a) \cdot w_{ma} \cdot L_a \cdot \cos \beta$

where: L_a = accumulation length = friction coefficient between accumulated μ_a material and the belt (see Table 1A) wma = material weight per unit length over the accumulation length

U.S. customary units: L_a [ft], w_{ma} [lb/ft]. Metric units: L_a [m], w_{ma} [N/m].

5. The inertial force **F**_a caused by the acceleration of the conveyed load (see linear positioning).

6. The friction force F_{fb} between belt and slider bed caused by the belt weight.

 $F_{fb} = \mu \cdot w_b \cdot b \cdot L_c \cdot \cos\beta$ where: wb = specific belt weight

b = belt width $L_c = conveying length$

U.S. customary units: w_b [lb/ft²], b [ft], L_c [ft]. Metric units: w_b [N/m²], b [m], L_c [m].*

For initial calculations, use belt width which is required to handle the size of the conveyed product.

Thus for conveyors, T_e is expressed by:

 $\mathsf{T}_{\mathsf{e}} = \mathsf{F}_{\mathsf{f}} + \mathsf{F}_{\mathsf{g}} + \mathsf{F}_{\mathsf{fv}} + \mathsf{F}_{\mathsf{fa}} + \mathsf{F}_{\mathsf{a}} + (\mathsf{F}_{\mathsf{fb}}) + \dots$

F_{fb} can be calculated by estimating the belt mass. In most cases, this weight is insignificant and can be ianored.

Note that other factors, such as belt supporting idlers, or accelerating the material fed onto the belt,

* If working in US units, w_b found in the belt specifications must be converted to the units lb/ft². If working in metric units, w_h must be converted to the units N/m².

may also account for some power requirement. In start-stop applications, acceleration forces as presented for linear positioning, may have to be evaluated.

Linear Positioning

T_e for a linear positioning application is primarily the sum of the following six factors (see Fig. 3).

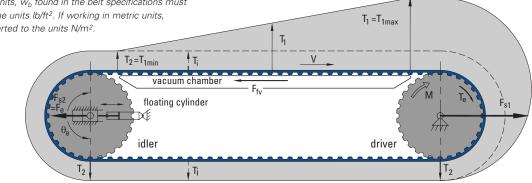
1. The force **F**_a required for the acceleration of a loaded slide with the mass ${\it m_s}$ (replace the mass of the slide with the mass of the package in conveying).

$$F_a = m_s \cdot a$$

The average acceleration a is equal to the change in velocity per unit time.

$$\label{eq:a_star} \begin{split} a &= \frac{v_f - v_i}{t} \\ \text{where:} \quad v_f &= \text{final velocity} \\ v_i &= \text{initial velocity} \\ t &= \text{time} \end{split}$$

U.S. customary units: F_a [lb], a [ft/s²], v_f and v_j [ft/s] t[s]. The mass is derived from the weight W_s [lb] and the acceleration due to gravity g (g = 32.2 ft/s^2):


$$m_{s} = \frac{W_{s}}{g} = \frac{W_{s}}{32.2} \left[\frac{Ib \cdot s^{2}}{ft} \right]$$

Metric units: F_a [N], a [m/s²], v_f and v_i [m/s], t [s], m_s [kg].

2. The friction force Ff between the slide and the linear rail is determined experimentally, or from data from the linear bearing manufacturer. Other contributing factors to the friction force are bearing losses from the yolk, piston and pillow blocks (see Fig. 3).

3. The externally applied working load F_w (if existing).

4. The weight W_s of the slide (not required in horizontal drives).

5. The force **F**_{ai} required to accelerate the idler.

$$\begin{aligned} \mathsf{F}_{ai} &= \ \frac{\mathsf{J}_i \bullet \alpha}{\mathsf{r}_o} = \frac{\mathsf{m}_i \bullet \mathsf{r}_o^2}{2 \bullet \mathsf{r}_o} \bullet \ \frac{\mathsf{a}}{\mathsf{r}_o} = \ \frac{\mathsf{m}_i \bullet \mathsf{a}}{2} \end{aligned}$$
where:
$$\begin{aligned} \mathsf{J}_i &= \frac{\mathsf{m}_i \cdot \mathsf{r}_o^2}{2} &= \text{inertia of the idler} \\ \mathsf{m}_i &= \text{mass of the idler} \\ \mathsf{r}_o &= \text{idler outer radius} \\ \alpha &= \frac{\mathsf{a}}{\mathsf{r}_o} &= \text{angular acceleration} \end{aligned}$$

In the formula above, the mass of the idler **m**_i is approximated by the mass of a full disk.

$$\begin{split} m_{i} &= \rho \bullet b_{i} \bullet \pi \bullet r_{O}^{2} \\ \text{where: } \rho &= \text{density of idler material} \\ b_{i} &= \text{width of the idler} \\ \text{U.S. units: } \rho \ [\text{Ib} \bullet s^{2}/\text{ft}^{4}], \ b_{i} \ \text{and} \ r_{O} \ [\text{ft]}. \\ \text{Metric units: } \rho \ [\text{kg/m}^{3}], \ b_{i} \ \text{and} \ r_{O} \ [\text{m]}. \end{split}$$

6. The force **F**_{ab} required to accelerate the belt mass.

$$F_{ab} = m_b \cdot a$$

The belt mass m_b is obtained from the specific belt weight w_b and belt length and width.

$$m_b = \frac{w_b \cdot L \cdot b}{g}$$

U.S. units: F_{ab} [lb], m_b [lb•s²/ft], a [ft/s²], w_b [lb/ft²], L and b [ft], g = 32.2 ft/s².

Metric units: F_{ab} [N], m_b [kg], a [m/s²], w_b [N/m²], L and b [m], g = 9.81 m/s².*

Thus for linear positioners, **T**_e is expressed by:

 $T_e = F_a + F_f + F_w + W_s + [F_{ai}] + [F_{ab}]$

Note that the forces in brackets can be calculated by estimating the belt mass and idler dimensions. In most cases, however, they are negligible and can be ignored.

Step 2. Select Belt Pitch

Use Graphs 2a, 2b, 2c or 2d to select the nominal belt pitch p according to T_e . The graphs also provide an estimate of the required belt width. (For H pitch belts wider than 6" (152.4mm) and T10 pitch belts wider than 150mm, use Graph 1).

Step 3. Calculate Pulley Diameter

Use the preliminary pulley diameter \tilde{d} desired for the design envelope and the selected nominal pitch p to determine the preliminary number of pulley teeth \tilde{z}_{p} .

$$\tilde{z}_p = \frac{\pi \cdot \tilde{d}}{p}$$

Round to a whole number of pulley teeth z_p . Give preference to stock pulley diameters. Check against the minimum number of pulley teeth z_{min} for the selected pitch given in Table 1 or Table 2.

Determine the pitch diameter d according to the chosen number of pulley teeth z_p .

$$d = \frac{p \cdot z_p}{\pi}$$

Step 4. Determine Belt Length and Center Distance

Use the preliminary center distance \tilde{C} desired for the design envelope to determine a preliminary number of belt teeth \tilde{z}_b .

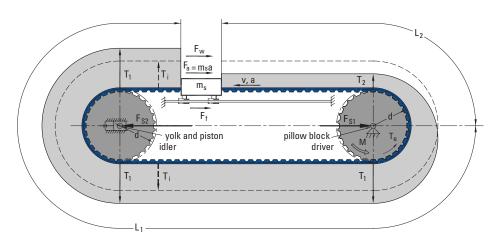


Fig. 3

Belt Selection Guide

For equal diameter pulleys:

$$\tilde{z}_b = 2 \cdot \frac{\tilde{C}}{p} + z_p$$

For unequal diameter pulleys: (See Fig. 4)

$$\tilde{z}_b \approx 2 \cdot \frac{\tilde{C}}{p} + \frac{z_{p_2} + z_{p_1}}{2} + \frac{p}{4C} \cdot \left(\frac{z_{p_2} - z_{p_1}}{\pi}\right)^2$$

Choose a whole number of belt teeth z_b . If you have profiles welded to the belt, consider the profile spacing while choosing the number of belt teeth.

Determine the belt length *L* according to the chosen number of belt teeth.

$$L = z_b \cdot p$$

Determine the center distance *C* corresponding to the chosen belt length.

For equal diameter pulleys:

$$C = \frac{L - \pi \cdot d}{2}$$

For unequal diameter pulleys:

$$C \approx \frac{Y + \sqrt{Y^2 - 2(d_2 - d_1)^2}}{4}$$

where: $Y = L - \frac{\pi \cdot (d_2 + d_1)}{4}$

Step 5. Calculate The Number of Teeth in Mesh of the Small Pulley

Calculate the number of teeth in mesh $\boldsymbol{z_m}$, using the appropriate formula.

For two equal diameter pulleys:

$$z_m = \frac{z_p}{2}$$

For two unequal diameter pulleys:

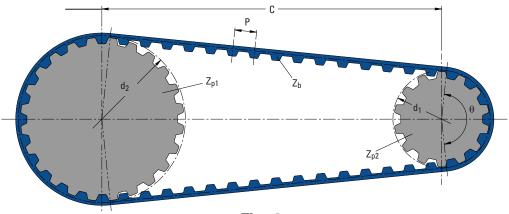
$$z_{m} \approx z_{p_{1}} \cdot \left(0.5 - \frac{d_{2} - d_{1}}{2\pi \cdot C}\right)$$

Step 6. Determine Pre-tension

The pre-tension $T_{i'}$ defined as the belt tension in an idle drive, is illustrated as the distance between the belt and the dashed line in Figs. 1, 2, and 3. The pretension prevents jumping of the pulley teeth during belt operation. Based on experience, timing belts perform best with the slack side tension as follows:

 $T_2 = (0.1, ..., 0.3) T_e$

Drives with a fixed center to center distance


Drives with fixed center distances have the position of the adjustable shaft locked after pre-tensioning the belt (see Figs. 1 and 3). Assuming tight and slack side tensions are constant over the respective belt lengths, and a minimum slack side tension in the range of the above relationship (uni-directional load only), the pre-tension is calculated utilizing the following equation:

$$T_i = T_2 + T_e \cdot \frac{L_1}{L}$$

where: L = belt length = L1 + L2 L1 = tight side belt length L2 = slack side belt length U.S. units: L1 [ft], and L2 [ft]. Metric units: L1 [m], and L2 [m].

Drives with a fixed center to center distance are used in linear positioning, conveying and power transmission applications. In linear positioning applications, the maximum tight side length is inserted in the equation above.

The pre-tension for drives with a fixed center distance can also be approximated using the

following formulas:

Conveying

(see Figs. 1 and 2) $T_i = (0.45,...,0.55)T_p$

Linear Positioning

(see Fig. 3)

 $T_i = (1.0,...,1.2)T_e$ $T_i = (1.0,...,2.0)T_e => for ATL series only$

Drives with a constant slack side tension

Drives with constant slack side tension have an adjustable idler, tensioning the slack side, which is not locked (Figs. 2 and 5). During operation, the consistency of the slack side tension is maintained by the external tensioning force, F_{e} . Drives with a constant slack side tension may be considered for some conveying applications, they have the advantage of minimizing the required pre-tension.

The minimum pre-tension can be calculated from the analysis of the forces at the idler in Fig. 5:

$$T_i \approx T_2 = \frac{F_e}{2\sin\frac{\theta_e}{2}}$$

where θ_{e} is the wrap angle of the belt around the back bending idler (Fig. 5).

Step 7. Calculate Tight Side Tension and Slack Side Tension

Conveying

(see Figs. 1 & 2) The tight side tension T_1 and the slack side tension **T**₂ are obtained by:

$$T_1 \approx T_i + 0.75T_e$$
$$T_2 = T_1 - T_e$$

Linear Positioning

(see Fig. 3)

The maximum tight side tension *T_{1max}* is obtained by:

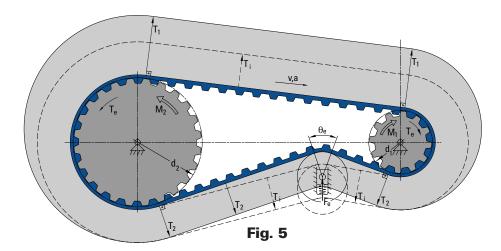
 $T_{1max} \approx T_i + T_e$

The respective minimum slack side tension *T***_{2min}** is obtained by:

 $T_{2min} \approx T_i - T_e$

for a fixed center distance.

Step 8. Calculate Belt Width


Determine the allowable tension T_{1all} for the cords of a 1" (or 25 mm) wide belt of the selected pitch given in Table 1 or Table 2. Note that T_{1all} is different for open end (positioning) and welded (conveying) belts. Determine the necessary belt width to withstand T_{1max} .

$$b \ge \frac{T_{1 \max}}{T_{1 \text{ all}}}$$

U.S. units: T₁ [Ib], T_{1 all} [I

U.S. units: T_1 [lb], T_{1all} [lb/in], b [in]. Metric units: T_1 [N], T_{1all} [N/25mm], b [mm].

Determine the allowable effective tension T_{eall} for the teeth of a 1" (or 25 mm) wide belt of the selected pitch from Table 1 or Table 2. Note that T_{eall} is different for open end (positioning) and welded (conveying) belts.

Use Table 3 (Tooth in Mesh Factor) that follows to determine the tooth-in-mesh-factor t_m corresponding to the number of teeth in mesh z_m .

Belt Selection Guide

Determine the speed factor t_v using Table 4 (Speed Factor) that follows.

Calculate the width of the belt teeth b necessary to transmit **T**_e using the following formula:

$$b \ge \frac{T_e}{T_{eall} \bullet t_m \bullet t_v}$$

U.S. units: T_e [Ib], T_{eall} [Ib/in], b [in]. Metric units: T_e [N], T_{eall} [N/25mm], b [mm].

Select the belt width that satisfies the last two conditions, giving preference to standard belt widths. However, belts of nonstandard widths are also available.

The factors t_m and t_v prevent excessive tooth loading and belt wear.

The forces contributing to Te, which in Step 1 were estimated, can now be calculated more accurately. Evaluate the contribution of these forces to the effective tension and, if necessary, recalculate Te and repeat steps 6, 7 and 8.

For conveyors, the dimensions of the transported products will normally determine the belt width.

Step 9. Calculate Shaft Forces

Determine the shaft force **F**_{s1} at the driver pulley:

For angle of wrap $\theta = 180^{\circ}$:

 $F_{s1} = T_1 + T_2$

For angle of wrap around the small pulley θ <180° (unequal diameter pulleys):

$$F_{s1} = \sqrt{T_1^2 + T_2^2} - 2T_1 \cdot T_2 \cos\theta$$

where $\theta = 2 \cdot \pi \cdot \left(0.5 - \frac{d_2 - d_1}{2 \cdot \pi \cdot C}\right)$

Determine the shaft force F_{s2} at the idler pulley:

For angle of wrap $\theta = 180^{\circ}$:

 $F_{s2} = 2 \cdot T_2$ when load moves toward the driver pulley, and

 $F_{s2} = 2 \cdot T_1$ when load moves away from the driver pulley.

For angle of wrap around the small pulley

 θ <180° (unequal diameter pulleys):

 $F_{s2} = T_2 \cdot \sqrt{2} (1 - \cos\theta)$ when load moves toward the driver and

 $F_{s2} = T_1 \cdot \sqrt{2} (1 - \cos\theta)$ when the load moves away from the driver.

Step 10. Calculate the Stiffness of a Linear Positioner

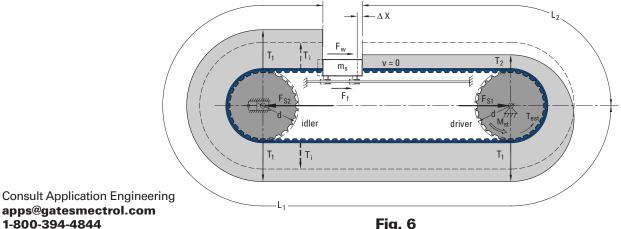
The total stiffness of the belt depends mainly on the stiffness of the belt segments between the pulleys. In most cases, the influence of belt teeth and belt cords in the tooth-in-mesh area can be ignored.

Calculate the resultant stiffness coefficient of tight and slack sides **k**, as a function of the slide position (Fig. 6).

$$\mathbf{k} = \mathbf{c}_{\mathrm{sp}} \cdot \mathbf{b} \cdot \frac{\mathbf{L}}{\mathbf{L}_1 \cdot \mathbf{L}_2}$$

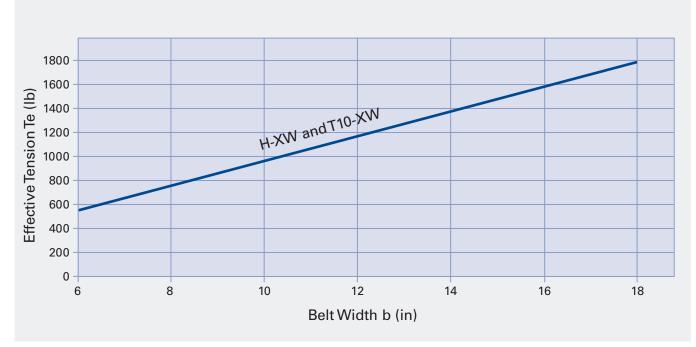
where: L_1 = tight side length L_2 = slack side length c_{sp} = specific stiffness (Table 1).

U.S. units: k [lb/in], C_{sp} [lb/in], b [in], L [in]. Metric units: k [N/mm], C_{sp} [N/mm], b [mm], L [mm].


Note that k is at its minimum when the tight and slack sides are equal.

Determine the positioning error Δx due to belt elongation caused by the remaining static force F_{st} on the slide:

$$\Delta x = \frac{F_{st}}{k}$$


In Fig. 6, for example, F_{st} is comprised of F_f and F_w and is balanced by the static effective tension Test at the driver pulley.

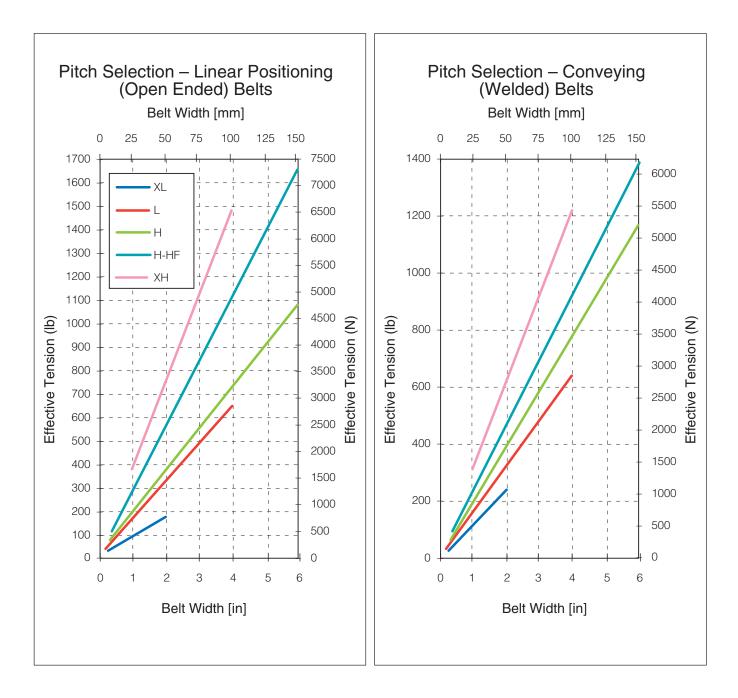
Note that $\Delta \mathbf{x}$ is inversely proportional to the belt width. If you want reduced Δx , increase the belt width or select a belt with stiffer cords and/or with a larger pitch.

Technical Design Tools

Graph 1

Tooth In Mesh Factor

No. of Teeth in Mesh zm	Tooth in Mesh Factor tm				
3	0.39				
4	0.5				
5	0.59				
6	0.67				
7	0.74				
8	0.8				
9	0.85				
10	0.89				
11	0.92				
12	0.95				
13	0.97				
14	0.99				
15	1				
T 1 0					


Table 3

Speed Factor

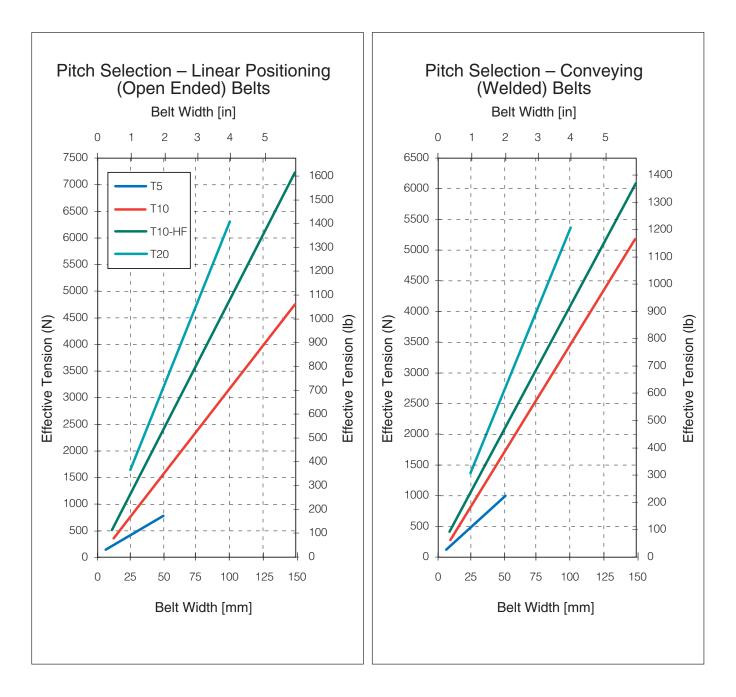
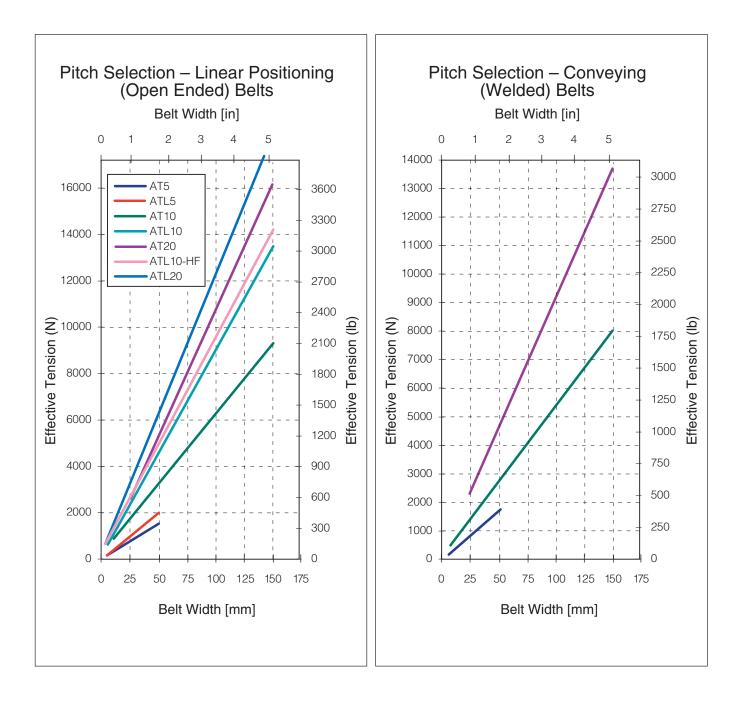
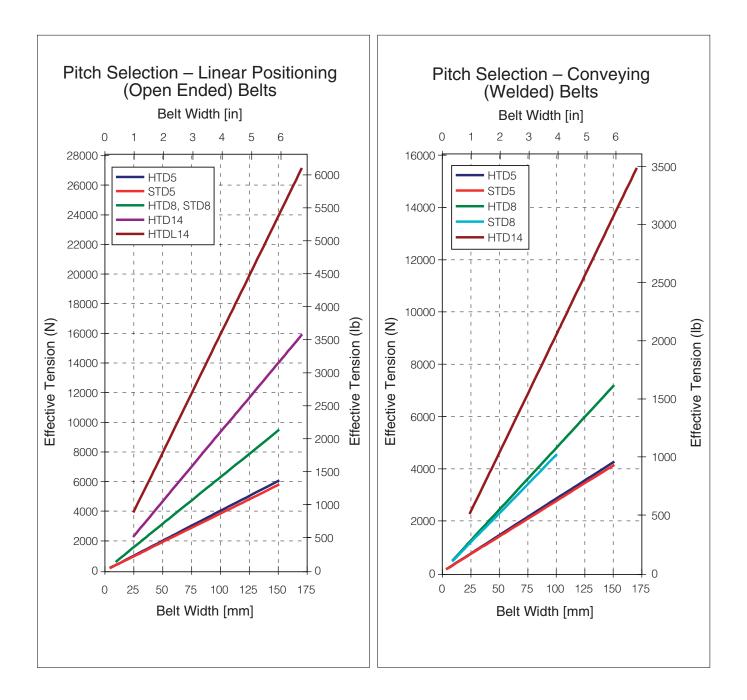

Spe	Speed						
ft/min	m/s	tv					
0	0	1					
200	1	0.99					
400	2	0.98					
600	3	0.97					
800	4	0.95					
1000	5	0.93					
1200	6	0.9					
1400	7	0.87					
1600	8	0.84					
1800	9	0.81					
2000	10	0.77					

Table 4


Technical Design Tools



GRAPH 2b

GRAPH 2c

GRAPH 2d

Belt Selection Examples

Conveying

v	= 120 ft/min	Speed
W	= 60 lb	Box weight
18"	x 12"	Box bottom size
С	= 28 ft (336 in)	Center distance
b	= 15°	Conveyor angle of incline
d。	≈ 3.5"	Pulley outside diameter
slid	er bed made of steel	

belt teeth covered with nylon fabric

Considering only the box size, a belt width of approximately 12" would be necessary. Instead of using one 12" wide belt, however, we decide to build a conveyor with two parallel running belts. The minimum belt width will be determined.

Step 1

The boxes are carried lengthwise on 2 ft centers

Weight distribution over conveyor length $w_m = 30 \text{ lb/ft.}$

Friction force

$$\begin{split} F_f &= \mu \bullet w_m \bullet L_m \bullet \cos \beta \\ F_f &= 0.3 \bullet 30 \; \frac{lb}{ft} \bullet 28 \; ft \bullet \cos 15^\circ \qquad \qquad F_f &= 243.4 \; lb \end{split}$$

(coefficient of friction $\mu = 0.3$ obtained from Table 1A) Gravitational load

$$F_{g} = w_{m} \cdot L_{m} \cdot \sin \beta$$

$$F_{f} = 30 \frac{lb}{ft} \cdot 28 \text{ ft} \cdot \sin 15^{\circ}$$

$$F_{f} = 2174 \text{ lb}$$

Effective tension

$$T_e = 243.4 \text{ lb} + 2174 \text{ lb}$$

 $T_e = F_f + F_g$
 $T_e = 460.8 \text{ lb}$

Step 2

Selected belt tooth profile =>H (Graph 2a)

An effective tension of 460.8 lb can be transmitted by either L or H belt. We choose H tooth profile (0.5"). The minimum belt width to transmit the load will be approximately 2.5 inches.

Step 3

Approximate number of pulley teeth	$\tilde{z}_p = \frac{\pi \cdot d}{p}$
$\tilde{z}_{p} = \frac{\pi \cdot 3.5 \text{ in}}{0.5 \text{ in}}$	$=\tilde{z}_{p}=21.99$

Chosen number of teeth z = 22

(chosen number of teeth is greater than the recommended minimum number of pulley teeth for H tooth profile belt [$z_{min} = 14$] given in Table 1)

Pulley pitch diameter	$d = \frac{p \cdot z_p}{z_p}$
d = <u>0.5 in • 22</u>	π d = 3.501 in
π	

Step 4

Preliminary number of belt teeth	$\tilde{z}_b = 2 \cdot \frac{\tilde{C}}{p} + z_p$
$\tilde{z}_{b} = 2 \cdot \frac{336 \text{ in}}{0.5 \text{ in}} + 22$	$\tilde{z}_{b} = 1366$
Chosen number of belt teeth	z _b = 1366
Belt length	$L = z_p \bullet p$
L = 1366 • 0.5 in	L = 683 in
Step 5	
Number of teeth in mesh	$z_m = \frac{z_p}{2}$

Step 6

 $z_{m} = \frac{22}{2}$

Pre-tension	$T_i = 0.5T_e$
T _i = 0.5 • 460.8 lb	T _i = 230.4 lb

z_m = 11

Step 7

Tight side tension	
$T_1 \approx T_i + 0.75T_e$	
$T_1 \approx 230.4 \text{ lb} + 0.75 \bullet 460.8 \text{ lb}$	T ₁ = 576 lb
Slack side tension	$T_2 = T_1 - T_e$
T ₂ = 576 – 460.8 lb	T ₂ = 115.2 lb

Step 8

Allowable belt tension (from Table 1)	T _{1all} = 245 lb/in
Belt width b to withstand T _{1max}	$b \ge \frac{T_{1max}}{T_{1all}}$
$b \ge \frac{576 \text{ lb}}{245 \frac{\text{lb}}{\text{in}}}$	b ≥ 2.35 in
Allowable effective tension (from Table 1)	T _{eall} = 330 lb/in
Tooth in mesh factor (fromTable 3; for z _m = 11)	t _m = 0.92
Speed factor (fromTable 4; for v = 120 ft/min)	t _v = 1
Belt width to transmit T_{e}	$b \ge \frac{T_e}{T_{eall} \bullet t_m \bullet t_v}$
$b \ge \frac{460.8 \text{ lb}}{330 \frac{\text{lb}}{\text{in}} \bullet 0.92 \bullet 1}$	l _{eall} • 'm • 'v b ≥ 1.52 in
IN	

Chosen belt width—boxes will be conveyed on two belts 1.5" wide each

(Note that each belt is loaded by half of the calculated forces)

Belt Selection Examples

Step 9

Shaft force at driver

 $F_{s1} = T_1 + T_2$ $F_{s1} = 691.2 \text{ lb}$ $F_{s1} = 576 \text{ lb} + 115.2 \text{ lb}$ Shaft force at idler

 $F_{s2} = 2T_2$ $F_{s2} = 2 \cdot 115.2 \text{ lb}$

Linear Positioning

v	= 3.5 m/s	Speed
а	= 20 m/s ²	Slide acceleration
m _s	= 30 kg	Slide mass
F _f	= 50 N	Friction force
Δχ	≤ 0.1 mm	Positioning error
d _o C	≈ 50mm	Pulley diameter
C	= 3000 mm	Center distance
S	= 2500 mm	Travel
Lp	= 160 mm	Platform length
۳		

Step 1

Force to accelerate the slide	$F_a = m_s \cdot a$
$F_a = 30 \text{ kg} \cdot 20 \text{ m/s}^2$	$F_{a} = 600 N$
Friction force	$F_f = 50N$
Effective tension	$T_e = F_a + F_f$
$T_{e} = 600N + 50N$	$T_e = 650 N$

Step 2

Selected belt tooth form =>AT5 (Graph 2c)

For linear positioning, belts of the AT series are preferred, because of the higher cord and tooth stiffness.

Step 3

Approximate number of pulley teeth	$\tilde{z}_{p} = \frac{\pi \cdot d}{p}$
$\tilde{z}_{p} = \frac{\pi \cdot 50mm}{5mm}$	$\tilde{z}_{p} = 31.4$

Chosen number of teeth

(greater than the recommended minimum number of pulley teeth for an AT5 belt $[z_{min} = 12]$ given in Table 1)

 $z_{p} = 32$

$d = \frac{p \cdot z_p}{p}$
π d = 50.93mm

Step 4

Pull

Preliminary number of belt teeth	$\tilde{z}_b = 2 \cdot \frac{C}{D} + z_p$
$\tilde{z}_{b} = \frac{2 \cdot 3000 \text{mm}}{5 \text{mm}} + 32$	ž _b = 1232
Chosen number of belt teeth	z = 1232
Belt length	$L = z_b \bullet p$
L = 1232 • 5mm	L = 6160mm
(in al. 160 man aver the alida)	

(incl. 160mm over the slide)

Step 5

Number of teeth in mesh

$z = \frac{32}{32}$	
^{-m} 2	

Step 6

 $F_{s2} = 230.4$ lb

Belt pre-tension $T_i = 1.1 \cdot 650N$

Step 7

Maximum tight side tension T_{1max} ≈ 715N + 650N

Maximum slack side tension

 $T_{2max} \approx 1365N - 650N$

Step 8

Allowable belt tension (from Table 1) Belt width b to withstand T_{1max} ь < 1365N эг

$$b \ge \frac{100014}{1615N} \cdot 25mm$$

Allowable effective tension (from Table 1) Tooth in mesh factor (from Table 3; for $z_m = 16$) Speed factor (from Table 4; for v = 3.5 m/s) Belt width to transmit Te

$$b \ge \frac{650N}{\frac{1270N}{25mm}} \bullet 1 \bullet 0.96$$

Chosen belt width (for increased b = 50mm stiffness a wider belt is chosen)

Step 9

Maximum shaft force at driver $F_{s1max} = T_{1max} + T_{2max}$ $F_{s1max} = 2080N$ $F_{s1max} = 1365N + 715N$ Maximum shaft force at idler $F_{s2max} = 2 \cdot T_{1max}$ $F_{s2max} = 2 \cdot 1365N$ $F_{s2max} = 2730N$

Step 10

stiffness
$$k = c_{sp} \cdot b \cdot \frac{L_1 + L_2}{L_1 \cdot L_2}$$
$$k = 17600 \cdot \frac{N}{mm} \cdot 50mm \cdot \frac{6000mm}{3290mm \cdot 2710mm}$$

$$k = 592.2 \frac{N}{mm}$$

Slide displacement

$$\Delta x = \frac{50N}{592.2 \frac{N}{mm}}$$

$$\Delta x = 0.084$$
mm < 0.1mm

2710mm

 $\Delta x = F_{st}$

Static load on the slide F_{st} is equal to the friction force $(F_{st} = F_{f} = 50N)$

 $z_m = \frac{z_p}{2}$ $z_{m} = 16$

> $T_i = 1.1 \bullet T_e$ $T_i = 715N$

 $T_{1max} \approx T_i + T_e$ $T_{1max} = 1365N$

 $T_{2max} \approx T_{1max} - T_{e}$ $T_{2max} = 715N$

$$T_{1all} = 1615N/25mm$$

$$b \ge \frac{T_{1max}}{T_{1all}}$$

$$b \ge 21.1mm$$

$$T_{eall} = 1270N/25mm$$

$$t_m = 1$$

$$t_v = 0.96$$

$$b \ge \frac{T_e}{T_{eall} \cdot t_m \cdot t_v}$$

$$b \ge 13.3mm$$

Gates Mectrol • Urethane Timing Belts 60

Chemical Name	Butyl Rubber	Cloroprene (Neoprene)	Chloro- sulfonated Polyethylene (Hypalon)	Fluorocarbon A (Viton)	Natural Rubber	Nitrile (Buna N)	Poly- urethane	Silicone
Acetic Acid, 30%	2	1	1	3	2	2	4	1
Acetic Acid, Hot	4	2	5	5	4	5	4	4
Acetone	1	4	2	4	3	4	4	3
Acetyl Chloride	4	4	4	1	4	4	4	3
Acrylic Acid	5	5	5	4	5	2	5	5
Alkyl Acetone	1	1	5	1	1	3	4	2
Alkyl Alcohol	4	4	5	4	4	1	1	2
Alkyl Benzene	5	4	5	2	5	4	4	4
Alkyl Chloride	4	4	5	2	4	2	3	5
Aluminum Acetate	2	2	1	4	1	4	4	4
Aluminum Ammonium Sulphate	5	2	5	1	2	2	5	5
Aluminum Chloride	1	2	1	1	1	1	2	2
Aluminum Nitrate	1	2	1	1	1	1	3	2
Ammonia, Anhydrous	1	1	2	4	4	2	4	2
Ammonia Gas, Cold	1	1	1	4	1	1	2	1
Ammonia Gas, Hot	4	4	2	4	3	2	4	1
Ammonium Chloride	1	2	1	1	1	2	2	3
Ammonium Hydroxide	1	3	1	3	3	4	4	1
Amyl Acetate	2	4	4	4	5	4	4	4
Animal Fats (Lards)	3	3	3	1	5	1	3	2
Animal Fats (oils)	2	2	5	1	4	1	3	5
Antifreeze Solutions	3	3	2	2	1	1	4	3
Antimony Pentachloride	4	4	4	1	4	2	4	4
Apple Acid	4	2	2	1	1	1	5	2
Argon	2	4	4	1	5	1	1	2
Aromatic Alcohol	5	3	5	1	3	3	5	5
Aromatic Fuels	4	4	4	1	4	2	4	4
Aromatic Hydrocarbons	4	4	5	1	4	4	3	3
Aromatic Spirits	4	5	5	1	4	3	5	5
Aromatic Vinegar	1	2	5	1	1	3	2	1
Arsenic Chloride	4	1	5	4	4	3	5	5
Ascorbic Acid	5	5	5	1	5	5	5	5
Automotive Brake Fluid	2	2	2	4	2	3	4	3
Baking Soda	1	1	5	1	1	1	1	1
Barium Fluoride	3	2	3	3	4	1	1	4
Barium Nitrate	2	1	2	1	4	1	2	2
Benzene	4	4	4	2	4	4	4	4
Benzilic Acid	5	5	5	5	5	5	5	5
Benzol	4	4	4	2	4	4	4	4
Bleach Solutions	2	4	1	5	4	4	4	2
Blood	5	1	5	2	5	3	2	2
Borax	1	5	1	1	5	2	1	2
Boric Acid	1	2	1	1	1	1	1	1

1 = Excellent

2 = Good 3 = Poor

3 = Poor 4 = Not Recommended

Chemical Name	Butyl Rubber	Cloroprene (Neoprene)	Chloro- sulfonated Polyethylene (Hypalon)	Fluorocarbon A (Viton)	Natural Rubber	Nitrile (Buna N)	Poly- urethane	Silicone
Butadiene	4	4	3	3	4	4	4	4
Butanol (Butyl Alcohol)	2	2	1	5	1	1	5	2
Butter Animal Fat	3	3	2	5	4	1	3	2
Butyl Acetate	2	4	5	4	4	4	4	4
Butyric Acid	2	4	3	3	4	4	4	4
Calcium Carbonate	1	1	1	1	1	1	4	4
Calcium Nitrate	1	1	1	1	1	1	1	2
Calcium Phosphate	1	2	1	1	1	1	1	1
Calcium Sulfate	1	4	1	2	3	1	2	5
Camphor	5	5	5	2	5	1	5	5
Cane Sugar Liquors	1	2	5	1	1	1	4	1
Carbon Fluorides	5	5	5	5	5	5	5	5
Carbon Monoxide	1	4	1	1	3	1	1	1
Carbonated Beverages	5	1	5	1	5	1	2	3
Carbonic Acid	1	4	1	1	1	2	1	1
Castor Oil	2	1	1	1	1	1	1	1
Catsup	5	2	5	1	1	1	4	5
Caustic Lime	1	2	1	1	1	1	5	1
Cement, Portland	5	5	5	1	5	1	5	5
Chloric Acid	5	5	5	5	5	5	5	5
Chlorine (Wet)	5	4	5	1	5	5	4	4
Chlorine Water	4	4	5	1	4	3	4	4
Chloroethane	5	4	5	1	5	1	3	5
Chloroform	4	4	4	2	4	4	4	4
Cholesterol	5	5	5	5	5	5	5	5
Chromic Acid	3	4	5	1	4	4	4	3
Citric Acid	1	1	1	1	1	1	1	1
Clorine (Dry)	5	4	5	1	5	5	4	4
Clorox	5	5	5	1	5	2	5	2
Coconut Oil	2	4	3	1	4	1	3	1
Copper Sulfate	1	2	1	1	2	1	4	1
Cottonseed Oil	3	3	2	1	4	1	1	1
Creosote (Coal Tar)	4	2	4	1	4	1	3	4
Degreasing Fluid	3	5	4	5	4	4	1	5
Developing Fluids	2	2	1	1	1	1	5	2
Dichloroethane	4	4	5	1	4	2	3	5
Dichloroethylene	3	4	4	1	4	4	3	5
Diesel Oil	4	4	3	1	4	1	3	4
Dimethyl Acetemide	5	5	5	4	5	5	5	5
Dimethyl Formamide (DMF)	2	4	4	4	4	3	4	3
Dry Cleaning Fluids	4	4	4	1	4	3	4	4
DTE Light Oil	4	2	4	1	4	1	2	3
Epoxy Resins	1	1	5	4	5	5	5	5

1 = Excellent

3 = Poor 4 = Not Recommended

Chemical Name	Butyl Rubber	Cloroprene (Neoprene)	Chloro- sulfonated Polyethylene (Hypalon)	Fluorocarbon A (Viton)	Natural Rubber	Nitrile (Buna N)	Poly- urethane	Silicone
Ethanol	1	2	1	5	1	1	5	2
Ethyl Butyl Ketone	2	5	5	5	4	4	5	5
Ethyl Hexyl Alcohol	1	1	1	1	1	1	4	2
Ethylene Alcohol	1	1	1	1	1	1	2	1
Ethylene Chloride	4	4	4	2	4	4	4	4
Ferric Sulfate	1	2	1	1	1	1	2	3
Fertilizer Salts, Aqueous	5	1	5	1	5	1	5	5
Fish Oil	4	2	5	1	4	1	2	1
Fluorine	4	4	5	2	4	4	4	4
Fluorine, Gas	4	4	4	1	4	4	4	4
Fluorine, Liquid	5	5	5	2	5	4	5	5
Freon 11	4	4	1	2	4	2	5	4
Freon 112	4	2	2	2	4	2	2	4
Freon 13	1	1	1	1	5	1	3	4
Gallic Acid	2	2	2	1	1	2	4	5
Gasoline Premium Unleaded	4	3	3	1	4	2	2	4
Gelatin	1	2	1	1	1	1	4	1
Glue	1	1	1	1	2	1	1	1
Glycerol (Glycerin)	1	1	1	1	1	1	4	1
Glycol Ethyl Ether	1	4	5	4	4	2	5	5
Glycols	1	2	1	1	1	1	5	1
Grain Alcohol	1	1	1	2	1	1	4	1
Honey	5	1	5	1	5	1	3	5
Hydrofluoric Acid (Anhydrous)	5	5	5	1	5	4	5	4
Hydrogen	1	1	1	1	2	1	2	3
Hydrogen Peroxide	5	4	2	5	4	4	5	3
lodine	2	4	2	1	4	2	4	3
Isobutyl Alcohol	1	1	1	1	1	2	4	1
Isopropanol	1	3	1	5	1	1	4	1
Lactic Acid, Cold	1	1	1	1	1	1	4	1
Lard(Animal Fat)	3	2	4	1	4	1	1	2
Lubricating Oils, Diester	4	3	4	2	4	2	4	4
Lubricating Oils, Petroleum	4	2	2	1	4	1	2	4
Magnesium Acetate	1	4	1	4	4	4	4	4
Magnesium Salts	1	1	1	1	1	1	1	1
Maleic Acid	2	4	4	1	4	3	5	4
Mercuric Sulfate	2	2	2	2	2	1	5	2
Mercury	1	1	1	1	1	1	1	1
Methane	4	2	2	1	3	1	3	4
Methanol (Methyl Alcohol)	1	4	1	4	1	1	4	1
Methyl Butyl Ketone	1	4	4	4	4	4	4	4
Methyl Chloride	4	4	4	2	4	4	4	4
Methyl Ethyl Ketone (MEK)	1	4	4	4	4	4	4	4

1 = Excellent

2 = Good 3 = Poor

3 = Poor 4 = Not Recommended

Chemical Name	Butyl Rubber	Cloroprene (Neoprene)	Chloro- sulfonated Polyethylene (Hypalon)	Fluorocarbon A (Viton)	Natural Rubber	Nitrile (Buna N)	Poly- urethane	Silicone
Nicotine	5	3	5	2	5	5	2	5
Nitrogen	1	2	1	1	1	1	1	1
Nitrous Acid	5	5	5	5	3	4	5	5
Nitrous Oxide	1	5	1	3	1	1	2	1
Olefins	5	5	5	1	5	5	5	5
Oleic Acid	4	4	2	2	4	1	2	4
Ozone	2	4	1	1	4	4	1	1
Peanut Oil	3	4	2	1	4	1	2	1
Pectin (Liquor)	5	3	5	5	5	1	1	1
Phosphoric Acid 20%	2	3	1	1	2	4	3	3
Pine Oil	4	4	4	1	4	2	1	4
Polyethylene Glycol	1	2	1	1	1	1	5	5
Potassium Acid Sulfate	1	1	5	3	1	3	4	2
Pyruvic Acid	5	5	5	5	5	5	5	5
Radiation	4	3	3	3	3	3	3	2
Salt Water	1	2	1	1	1	1	4	1
Silicone Greases	1	1	1	1	1	1	1	3
Silver Bromide	5	5	5	5	5	5	5	5
Silver Nitrate	1	2	1	1	1	2	1	1
Soap Solutions	2	2	1	1	2	1	3	1
Soda	1	1	5	1	1	1	5	1
Soybean Oil	3	2	1	1	4	1	2	1
Steam <300 F	2	3	4	2	5	4	4	3
Sulfuric Acid, 40%	2	3	3	1	4	3	5	4
Table Salt	1	1	1	1	1	1	1	3
Tannic Acid	1	2	1	1	1	1	1	2
Tetrahydrofuran (THF)	2	4	4	4	4	4	3	4
Titanic Acid	5	5	5	5	5	5	5	5
Toluene	4	4	4	2	4	4	4	4
Toloul	4	4	4	5	4	4	4	4
Trimethyl Amine (TMA)	5	5	5	4	5	5	5	5
Turpentine	4	4	4	2	4	1	4	4
Uric Acid	5	5	5	5	5	5	5	5
Vegetable Oils	3	1	2	1		1	1	1
Vinegar	1	2	1	1	4 2	2	4	3
	1	4	3	4	4	4	4	
Vinyl Acetate	4		5	2			4 5	4
Vinyl Chloride	4	4	5	1	4	4	5	5
Water								
Wax	4	1	1	1	4	1	1	1
Xylene Zinc Acetate	4	4	4	2 4	4	4	4	4

2 = Good 3 = Poor 4 = Not Recommended

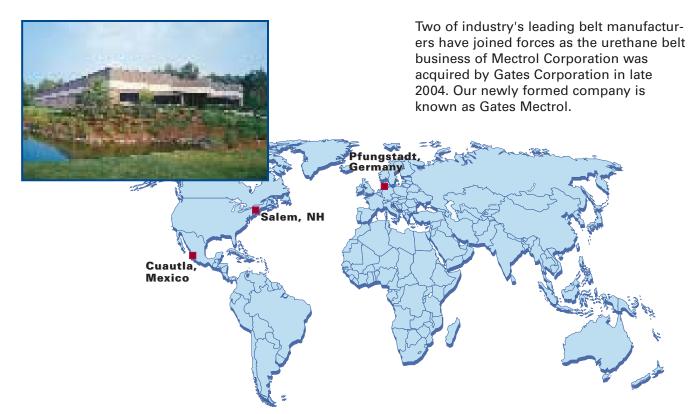
Other Gates Mectrol Products

Gates Mectrol is one of the foremost manufacturers of motion control products. Our company's rapid growth in becoming a market leader is testimony to the quality of our products, and our ability to service the demands of our customers, worldwide.

Along with our urethane timing belts, Gates Mectrol manufactures a complete line of quality pulleys in both standard and custom designs using both Inch and Metric pitches.

Pulleys

Our standard pulleys may be easily modified to include specific bores, keyways and setscrews. Custom pulley work may include self-tracking features, special materials and plating. We also offer special pitches upon request to accommodate high precision, zero-backlash applications.



Clamp Plates

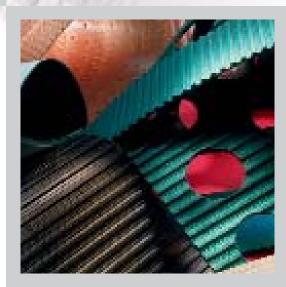
Gates Mectrol offers a large selection of standard clamp plates for installation of our open ended belts into your particular application. Customized clamp plates are also available.

Facilities

Over 180 Gates Mectrol associates, working from three different manufacturing locations worldwide, are committed to providing the Gates Mectrol 'CAN DO' spirit to all of our customers and meeting your precision synchronization needs.

Gates Mectrol's passion for products is evidenced in our commitment to employing state-of-the-art manufacturing technologies, striving to insure the highest levels of quality and customer service. To this end, Gates Mectrol has achieved ISO 9001:2000 certification.

Gates Mectrol is driving LEAN manufacturing techniques throughout every aspect of our company.

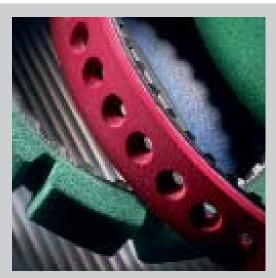

CEEC (Communicate, Educate, Empower and Conquer) is a team of committed Gates Mectrol associates who are driving new and better philosophies throughout our entire organization.

Gates Mectrol is eager to have the opportunity to serve you.

SWITTCHE A.L.

USA CORPORATE HEADQUARTERS

Gates Mectrol, Inc. 9 Northwestern Drive Salem, NH 03079 Tel. +1 (603) 890-1515 Tel. +1 (800) 394-4844 Fax +1 (603) 890-1616 email: contact@gatesmectrol.com


GERMANY

Gates Mectrol GmbH Werner von Siemens Strasse 2 64319 Pfungstadt Tel. +49 (0) 6157-9727-0 Fax +49 (0) 6157 9727-272 email: info@gatesmectrol.de

MEXICO

Tomkins Poly Belt Mexicana S.A. de C.V. Km. 96.5 Carr. Mexico Cuautla No. 133 Cuautla Morelos Apartado Postal 9 C.P. 62740 Tel. +52 (735) 353-1521 Fax +52 (735) 353-2844 email: mectrol@ifg.com.mx

© 2005 Gates Mectrol GM_UTB_05

